Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichiacoli[J]. Environmental Science & Technology, 2008, 42(17): 6730-6735
[3]
Jiang W, Mashayekhi H, Xing B S, et al. Bacterial toxicity comparison between nano-and micro-scaled oxide particles[J]. Environmental Pollution, 2009, 157(5): 1619-1625
[4]
Li M H, Pokhrel X, Jin X, et al. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media[J]. Environmental Science & Technology, 2010, 45(2): 755-761
[5]
Wang N, Zhu L H, Wang D L, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2 [J]. Ultrasonics Sonochemistry, 2010, 17(3): 526-533
[6]
Saleh N, Phenrat T, Sirk K, et al. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface[J]. Nano Letters, 2005, 5(12): 2489-2494
[7]
Yao X Z, Guo Z, Yuan Q H, et al. Exploiting differential electrochemical stripping behaviors of Fe3O4 Nanocrystals toward Heavy metal ions by crystal cutting[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12203-12213
[8]
Mayo J T, Yavuz C, Yean S, et al. The effect of nanocrystalline magnetite size on arsenic removal [J]. Science and Technology of Advanced Materials, 2007, 8(1): 71-75
[9]
Chung T H, Hsiao J K, Hsu S C, et al. Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy[J]. ACS nano, 2011, 5(12): 9807-9816
[10]
Ma P, Luo Q, Chen J E, et al. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice[J]. International Journal of Nanomedicine, 2012, 7: 4809-4818
[11]
Liu J F, Zhao Z S, Jiang G B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water [J]. Environmental Science & Technology, 2008, 42(18): 6949-6954
[12]
Zhu H, Han J, Xiao J Q, et al. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants[J]. Environ Monit, 2008, 10(6): 713-717
[13]
Hu J D,Zevi Y,Kou X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions[J]. Science of the Total Environment, 408(16): 3477-3489
[14]
Erhayem M, Sohn M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles[J]. Science of the Total Environment, 2014, 470-471: 92-98
[15]
Erhayem M, Sohn M. Stability studies for titanium dioxide nanoparticles upon adsorption of Sumannee River humic and fulvic acids and natural organic matter[J]. Science of The Total Environment, 2014, 468-469: 249-257
[16]
Zhang Y, Chen Y, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17): 4249-4257
[17]
Chappell M A, George A J, Dontsova K M, et al. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances[J]. Environmental Pollution, 2009, 157(4): 1081-1087
[18]
Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano-and microscale latex particles in saturated porous media[J]. Journal of Colloid and Interface Science, 2008, 321(1): 74-83
[19]
Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1): 126-134
[20]
Hu J, Chen G H, Lo I. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles [J]. Water Research, 2005, 39(18): 4528-4536
[21]
He Y T, Wan J, Tokunaga T. Kinetic stability of hematite nanoparticles: the effect of particle sizes[J]. Journal of Nanoparticle Research, 2008. 10(2): 321-332
[22]
吴丰昌, 邢宝山. 天然有机质及其在环境中的作用机理 [M]. 2010, 北京: 地质出版社
[23]
Illés E,Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid and Interface Science, 2006, 295(1): 115-123
[24]
Niu H Y, Zhang D, Zhang S X, et al. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole[J]. Journal of Hazardous Materials, 2011, 190(1): 559-565
[25]
Lin D H, Liu N, Yang K, et al. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions[J]. Carbon, 2009, 47(12): 2875-2882
[26]
Hyung H, Kim J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12): 4416-4421
Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24): 9005-9013
[30]
Yang K, Lin D H, Xing B S. Interactions of humic acid with nanosized inorganic oxides[J]. Langmuir, 2009, 25(6): 3571-3576
[31]
Wang Z F, Guo H S, Yu Y L, et al. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction[J]. Journal of Magnetism and Magnetic Materials, 2006, 302(2): 397-404
[32]
International Humic Substances Society. Chemical properties of IHSS samples. 2014 [EB/OL] [2014-7-6]; Available from: http://www.humicsubstances.org
[33]
Zhao X L, Cai Y Q, Wu F C, et al. Determination of perfluorinated compounds in environmental water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry using surfactant-coated Fe3O4 magnetic nanoparticles as adsorbents[J]. Microchemical Journal, 2011, 98(2): 207-214
[34]
Kang S H, Xing B S. Humic acid fractionation upon sequential adsorption onto goethite[J]. Langmuir, 2008, 24(6): 2525-2531
[35]
Fu H B, Quan X, Chen S, et al. Interaction of humic substances and hematite: FTIR study [J]. Journal of Environmental Sciences, 2005, 17(1): 43-47