全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

汞同位素组成示踪燃煤发电过程中汞排放特征研究进展

Keywords: ,同位素,燃煤

Full-Text   Cite this paper   Add to My Lib

Abstract:

汞是一种持久性、全球性重金属污染物,污染范围广,排放源复杂,环境地球化学性质活跃.不同环境介质汞污染源解析一直是环境科学研究领域的难题.燃煤电站汞排放被认为是最大的人为汞释放源,亟需准确可靠的示踪手段来深入阐明燃煤电站汞排放过程、迁移转化等归趋行为.汞在自然界有7个稳定同位素,分别是196Hg(0.15%)、198Hg(10.02%)、199Hg(16.84%)、200Hg(23.13%)、201Hg(13.22%)、202Hg(29.80%)和204Hg(6.85%).由于同位素在演化过程中的分馏效应单向性并携有演化过程信息,在地域分布和生物地球化学循环过程中存在显著分异现象,因此,通过研究汞稳定同位素组成可评估、示踪燃煤汞排放特征和生物地球化学过程.本论文结合近年相关研究成果,针对汞同位素分馏过程、煤中汞同位素分馏现象以及汞同位素示踪燃煤电站汞排放的合理性和可行性进行了综述.

References

[1]  St Louis VL, Derocher AE, Stirling I, et al. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the canadian high-and sub-Arctic[J]. Environmental Science & Technology, 2011, 45 (14):5922-5928
[2]  Laffont L, Sonke JE, Maurice L, et al. Anomalous Mercury Isotopic Compositions of Fish and Human Hair in the Bolivian Amazon[J]. Environmental Science & Technology, 2009, 43 (23):8985-8990
[3]  Biswas A, Blum JD, Bergquist BA, et al. Natural Mercury Isotope Variation in Coal Deposits and Organic Soils[J]. Environmental Science & Technology, 2008, 42 (22):8303-8309
[4]  Lefticariu L, Blum JD, Gleason JD. Mercury Isotopic Evidence for Multiple Mercury Sources in Coal from the Illinois Basin[J]. Environmental Science & Technology, 2011, 45 (4):1724-1729
[5]  Bergquist BA, Blum JD. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318 (5849):417-420
[6]  Yin R, Feng X, Chen J. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications[J]. Environmental Science & Technology, 2014, 48 (10):5565-5574
[7]  任建莉, 周劲松, 骆仲泱, 等. 煤中汞燃烧过程析出规律试验研究[J]. 环境科学学报, 2002,22(3):289-293
[8]  Galbreath KC, Zygarlicke CJ. Mercury transformations in coal combustion flue gas[J]. Fuel Processing Technology, 2000, 65—66:289-310
[9]  殷立宝, 禚玉群, 徐齐胜, 等. 中国燃煤电厂汞排放规律[J]. 中国电机工程学报, 2013,29(1):1-9
[10]  Li Z, Feng X, Li G, et al. Mass balance and isotope characteristics of mercury in two coal-fired power plants in Guizhou, China. In: Advances in environmental science and engineering, Pts 1-6. Edited by: Iranpour R, Zhao J, Wang A et al. 2012. pp. 2576-2579.
[11]  Sherman LS, Blum JD, Keeler GJ, et al. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes[J]. Environ Sci Technol, 2012, 46 (1):382-390
[12]  Jackson TA, Muir DC. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal[J]. Sci Total Environ, 2012, 417-418:189-203
[13]  Malinovsky D, Sturgeon RE, Yang L. Anion-exchange chromatographic separation of Hg for isotope ratio measurements by multicollector ICPMS[J]. Analytical Chemistry, 2008, 80 (7):2548-2555
[14]  Chen J, Hintelmann H, Dimock B. Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25 (9):1402-1409
[15]  Sherman LS, Blum JD, Nordstrom DK, et al. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift[J]. Earth and Planetary Science Letters, 2009, 279 (1-2):86-96
[16]  Sonke JE, Sch?fer J, Chmeleff J, et al. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries[J]. Chemical Geology, 2010, 279 (3-4):90-100
[17]  Foucher D, Ogrinc, Hintelmann H. Tracing mercury contamination from the idrija mining region (slovenia) to the gulf of trieste using hg isotope ratio measurements[J]. Environmental Science & Technology, 2008, 43 (1):33-39
[18]  Gehrke GE, Blum JD, Marvin-DiPasquale M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica et Cosmochimica Acta, 2011, 75 (3):691-705
[19]  Liu J, Feng X, Yin R, et al. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China[J]. Chemical Geology, 2011, 287 (1):81-89
[20]  Guigueno MF, Elliott KH, Levac J, et al. Differential exposure of alpine ospreys to mercury: Melting glaciers, hydrology or deposition patterns?[J]. Environment International, 2012, 40:24-32
[21]  Yudovich YE, Ketris MP. Mercury in coal: A review Part 1. Geochemistry[J]. International Journal of Coal Geology, 2005, 62 (3):107-134
[22]  Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from natural and anthropogenic sources. In: Mercury fate and transport in the global atmosphere. Edited by: Mason R, Pirrone N. Springer US; 2009: 1-47
[23]  Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmos Chem Phys, 2010, 13(10):5951-5964
[24]  葛业君, 董众兵, 郑刘根, 等. 淮南市电厂和炉渣中汞的分布规律[J]. 环境化学, 2009,28(3):453-454
[25]  Bartov G, Deonarine A, Johnson TM, et al. Environmental impacts of the tennessee valley authority kingston coal ash Spill. 1. source apportionment using mercury stable isotopes[J]. Environmental Science & Technology, 2013, 47 (4):2092-2099
[26]  Wang Y, Huang J, Hopke PK, et al. Effect of the shutdown of a large coal-fired power plant on ambient mercury species[J]. Chemosphere, 2013, 92 (4):360-367
[27]  Sun R, Heimbuerger L-E, Sonke JE, et al. Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants[J]. Chemical Geology, 2013, 336:103-111
[28]  Bergquist RA, Blum JD. The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation[J]. Elements, 2009, 5 (6):353-357
[29]  Sonke JE, Blum JD. Advances in mercury stable isotope biogeochemistry preface[J]. Chemical Geology, 2013, 336:1-4
[30]  王琳, 齐孟文. 环境同位素示踪在环境学研究中的应用[J]. 环境与可持续发展, 2006,(1):29-30
[31]  吴志芳, 刘锡明, 张玉爱. 同位素应用的现状和新进展[J]. 同位素, 2012, (2):117-123
[32]  冯新斌, 陈玖斌, 付学吾, 等. 汞的环境地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, (5):503-530
[33]  Sun R, Sonke JE, Heimburger LE, et al. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions[J]. Environ Sci Technol, 2014, 48 (13):7660-7668
[34]  Yin R, Feng X, Shi W. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review[J]. Applied Geochemistry, 2010, 25 (10):1467-1477
[35]  Blum JD, Bergquist BA. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388 (2):353-359
[36]  Gray JE, Pribil MJ, Higueras PL. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain[J]. Chemical Geology, 2013, 357:150-157
[37]  Yin R, Feng X, Wang J, et al. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China[J]. Chemical Geology, 2013, 336:72-79
[38]  Smith CN, Kesler SE, Klaue B, et al. Mercury isotope fractionation in fossil hydrothermal systems[J]. Geology, 2005, 33 (10):825-828
[39]  Wang K, Orndorff W, Cao Y, et al. Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant[J]. Journal of Environmental Sciences-China, 2013, 25 (9):1858-1864
[40]  Yin R, Feng X, Wang J, et al. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China[J]. Chemical Geology, 2013, 336:80-86
[41]  Liu J, Feng X, Yin R, et al. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China[J]. Chemical Geology, 2011, 287 (1-2):81-89
[42]  Foucher D, Hintelmann H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2006, 384 (7-8):1470-1478
[43]  冯新斌, Foucher D, Hintelmann H, 等. 汞同位素组成示踪汞污染来源[C]. 中国化学会第28届学术年会: 2012
[44]  Jackson TA, Telmer KH, Muir DCG. Mass-dependent and mass-independent variations in the isotope composition of mercury in cores from lakes polluted by a smelter: Effects of smelter emissions, natural processes, and their interactions[J]. Chemical Geology, 2013, 352:27-46
[45]  Das R, Bizimis M, Wilson AM. Tracing mercury seawater vs. atmospheric inputs in a pristine SE USA salt marsh system: Mercury isotope evidence[J]. Chemical Geology, 2013, 336:50-61
[46]  Tavares PC, Kelly A, Maia R, et al. Variation in the mobilization of mercury into Black-winged Stilt Himantopus himantopus chicks in coastal saltpans, as revealed by stable isotopes[J]. Estuarine Coastal and Shelf Science, 2008, 77 (1):65-76
[47]  Adams DH, Paperno R. Stable isotopes and mercury in a model estuarine fish: Multibasin comparisons with water quality, community structure, and available prey base[J]. Science of the Total Environment, 2012, 414:445-455
[48]  Nicolardi V, Cai G, Parrotta L, et al. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery[J]. Environmental Pollution, 2012, 160:1-10
[49]  Dai S, Ren D, Chou C-L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94:3-21
[50]  Onsanit S, Chen M, Ke C, et al. Mercury and stable isotope signatures in caged marine fish and fish feeds[J]. Journal of Hazardous Materials, 2012, 203:13-21
[51]  Wang M, Zhang Y, Feng W-Y, et al. Determination of mercury in fish by isotope dilution inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2007, 35 (7):945-948

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133