全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

持久性有机卤代物在亚临界水中的脱卤机制研究进展

Keywords: POPs,亚临界水,加氢脱卤,脱卤路径

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过综述国内外研究进展并结合本研究组相关研究成果,对持久性有机卤代物在亚临界水中的脱卤路径及机制进行了综合性总结与分析,并对目前存在分歧的焦点问题进行了剖析讨论,同时对亚临界水脱卤技术的应用前景和可行性进行了评述.

References

[1]  Yak H K, Lang Q Y, Wai C M. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water [J]. Environmental Science & Technology, 2000, 34(13): 2792-2798
[2]  Anitescu G, Tavlarides L L. Oxidation of Aroclor 1248 in supercritical water: a global kinetic study [J]. Industrial & Engineering Chemistry Research, 2000, 39(3):583-591
[3]  Marulanda V, Bolaos G. Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: Laboratory-scale data and economic assessment [J].The Journal of Supercritical Fluids, 2010, 54(2): 258-265
[4]  Kawasaki S I, Oe T, Anjoh N, et al. Practical supercritical water reactor for destruction of high concentration polychlorinated biphenyls (PCB) and dioxin waste streams [J]. Trans IChemE, Part B, Process Safety and Environmental Protection, 2006, 84(B4): 317-324
[5]  Choi H, Al-Abed S R, Agarwal S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs [J]. Chemistry of Materials, 2008, 20(11): 3649-3655
[6]  Wei J J, Xu X H, Liu Y, et al. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters [J]. Water Research, 2006, 40(2): 348-354
[7]  Weber R, Yoshida S, Miwa K. PCB destruction in subcritical and supercritical water-evaluation of PCDF formation and initial steps of degradation mechanisms [J]. Environmental Science & Technology, 2002, 36(8): 1839-1844
[8]  Hinz D C, Wai C M, Wenclawiak B W. Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water [J]. Journal of Environmental Monitoring, 2000, 2(1): 45-48
[9]  Zhu N M, Li Y, Zhang F S. Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles [J]. Chemical Engineering Journal, 2011, 171(3): 919-925
[10]  吴德礼,马鲁铭,周荣丰.水溶液中氯代烷烃的催化还原脱氯研究 [J]. 环境化学,2004,23(6): 631-635
[11]  Agarwal S, Al-abed S R, Dionysiou D D, et al. Reactivity of substituted chlorines and ensuing dechlorination pathways of select PCB congeners with Pd/Mg bimetallics [J]. Environmental Science & Technology, 2009, 43(3): 915-921
[12]  Hori H, Nagaoka Y, Yamamoto A, et al. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water [J]. Environmental Science & Technology, 2006, 40(3): 1049-1054
[13]  Orth W S, Gillham R W. Dechlorination of trichloroethene in aqueous solution using Fe0 [J]. Environmental Science & Technology, 1996, 30(1): 66-71
[14]  Han Y, Li W, Zhang M H, et al. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant [J]. Chemosphere, 2008, 72(1): 53-58
[15]  Zhu B W, Lim T T, Feng J. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica [J]. Chemosphere, 2006, 65(7):1137-1145
[16]  Keane M A, Pina G, Tavoularis G. The catalytic hydrodechlorination of mono-, di- and trichlorobenzenes over supported nickel [J]. Applied Catalysis B: Environmental, 2004, 48(4): 275-286
[17]  Nagpal V, Bokare A D, Chikate R C, et al. Reductive dechlorination of γ-hexachlorocyclohexcane using Fe-Pd bimetallic nanoparticles [J]. Journal of Hazardous Materials, 2010, 175(1/3):680-687
[18]  Yak H K, Wenclawiak B W, Cheng I F, et al. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water [J]. Environmental Science & Technology, 1999, 33(8): 1307-1309
[19]  Kubátová A, Herman J, Steckler T S, et al. Subcritical (hot/liquid) water dechlorination of PCBs (Aroclor 1254) with metal additives and in waste paint [J]. Environmental Science & Technology, 2003, 37(24): 5757-5762
[20]  Kubátová A, Lagadec A J M, Hawthorne S B. Dechlorination of Lindane, Dieldrin, Tetrachloroethane, Trichloroethene, and PVC in subcritical water [J]. Environmental Science & Technology, 2002, 36 (6): 1337-1343
[21]  Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions [J]. The Journal of Supercritical Fluids, 2007, 39(3): 362-380
[22]  Kim J H, Tratnyek P G, Chang Y S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron [J]. Environmental Science & Technology, 2008, 42(11): 4106-4112
[23]  Zhuang Y, Ahn S, Luthy R G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: pathways, kinetics, and reactivity [J]. Environmental Science & Technology, 2010, 44(21):8236-8242
[24]  Kluyev N, Cheleptchikov A, Brodsky E, et al. Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water [J]. Chemosphere, 2002, 46(9/10): 1293-1296
[25]  Zhu B W, Lim T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration [J]. Environmental Science & Technology, 2007, 41(21): 7523-7529
[26]  Wang X Y, Chen C, Chang Y, et al. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles [J]. Journal of Hazardous Materials, 2009, 30(2/3): 815-823
[27]  He F, Zhao D Y. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water [J]. Environmental Science & Technology, 2005, 39(9): 3314-3320
[28]  陈少谨,梁贺升. 纳米Co/Fe脱氯3,3',4,4'-四氯联苯(BZ#77) [J]. 环境化学,2008,27(6):770-774
[29]  Schrick B, Blough J L, Daniel J A, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles [J]. Chemistry of Materials, 2002, 14(12): 5140-5147
[30]  Joo S H, Zhao D Y. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer [J]. Chemosphere, 2008, 70(3): 418-425
[31]  Vincent T, Spinelli S, Guibal E. Chitosan-supported palladium catalyst. Ⅱ. Chlorophenol dehalogenation [J]. Industrial & Engineering Chemistry Research, 2003, 42(24): 5968-5976
[32]  Lowry G V, Reinhard M. Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative, catalyst regeneration [J]. Environmental Science & Technology, 2000, 34(15): 3217-3223
[33]  Kim K, Son S H, Kim K S, et al. Environmental effects of supercritical water oxidation (SCWO) process for treating transformer oil contaminated with polychlorinated biphenyls (PCBs) [J]. Chemical Engineering Journal, 2010, 165(1): 170-174
[34]  Crooker P J, Ahluwalia K S, Fan Z. Operating results from supercritical water oxidation plants [J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4865-4870
[35]  Veriansyah B, Kim J D. Supercritical water oxidation for the destruction of toxic organic wastewater: A review [J]. Journal of Environmental Sciences, 2007, 19(5): 513-522

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133