全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

精神病类药物在城市污水中的分布与净化

Keywords: 城市污水,精神病类药物,检测,存在,去除

Full-Text   Cite this paper   Add to My Lib

Abstract:

精神病类药物直接作用于中枢神经系统,破坏神经内分泌信号,其在环境中的积累将给生态系统和人类健康带来巨大的潜在风险,城市污水是其最重要的环境排放源.本文介绍了精神病类药物的分类、使用情况及生物毒性,总结了环境水样中精神病类药物分析检测方法,综述了世界各地城市污水中精神病类药物分布情况,比较了不同类型污水处理技术对精神病药物的去除效率,为促进我国城市污水中精神病类药物排放控制提供了基础资料和科学依据.

References

[1]  刘奇,魏东斌,陈振斌,等. 医药品和个人护理用品(PPCPs)类污染物氯化转化行为研究进展[J]. 环境化学,2012,31(3):278-286
[2]  Kula D, Gumustas M, Uslu B, et al. Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes[J]. Talanta, 2010, 82(1):286-295
[3]  Richardson S D, Ternes T A. Water Analysis: Emerging contaminants and current issues[J]. Analytical Chemistry, 2005, 77(12):3807-3838
[4]  Gust M, Buronfosse T, Giamberini, et al. Effects of fluoxetine on the reproduction of two prosobranch mollusks: Potamopyrgus antipodarum and Valvata piscinalis[J]. Environmental Pollution, 2009, 157 (2):423-429
[5]  郭宇杰,王学超,周振民,等. 我国城市污水处理现状调查品[J]. 环境化学,2012,31(7):1114-1115
[6]  周艳璞,白宗顺,冯长军,等. 北京市安康医院门诊抗精神病药物的调查分析[J]. 首都医药,2007,(1):43-43
[7]  铁常乐,王传跃. 我院2008年抑郁症住院患者精神药品应用分析[J]. 中国药房,2010,26:2406-2408
[8]  Foran C M, Weston J, Slattery M, et al. Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(4):511-517
[9]  Henry T B, Black M C. Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish[J]. Archives of Environmental Contamination and Toxicology, 2008,54(2):325-330
[10]  Péry A R R, Gust M, Vollat B, et al. Fluoxetine effects assessment on the life cycle of aquatic invertebrates[J]. Chemosphere, 2008, 73(3):300-304
[11]  Argüello P S, Fernández C, Tarazona J Y. Assessing the effects of fluoxetine on Physa acuta (Gastropoda, Pulmonata) and Chironomus riparius (Insecta, Diptera) using a two-species water-sediment test[J]. Science of the Total Environment, 2009,407(6):1937-1946
[12]  Fong P, Molnar N. Norfluoxetine induces spawning and parturition in estuarine and freshwater bivalves[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(6):535-538
[13]  Fong P. Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors[J]. The Biological Bulletin, 1998, 194(2):143-149
[14]  Schultzt M M, Furlong E T. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS[J]. Analytical Chemistry, 2008, 80(5):1756-1762
[15]  Brooks B W, Glidewell E A, Foran C M, et al. Waterborne and sediment toxicity of fluoxetine to select organisms[J]. Chemosphere, 2003, 52(1):135-142
[16]  Paterson G, Metcalfe C D. Uptake and depuration of the anti-depressant fluoxetine by the Japanese medaka (Oryzias latipes) [J]. Chemosphere, 2008, 74(1):125-130
[17]  Brooks B W, Foran C M, Richards S M, et al. Aquatic ecotoxicology of fluoxetine [J]. Toxicology Letters, 2003, 142(3):169-183
[18]  Jelic A, Gros M, Ginebreda A, et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment[J]. Water Research, 2011, 45(3):1165-1176
[19]  Gracia-Lorv E, Sancho J V, Hernández F. Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(16):2264-2275
[20]  Kosma C I, Lambropoulou D A, Albanis T. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece[J]. Journal of Hazardous Materials, 2010, 179(1/3):804-817
[21]  Calisto V, Esteves V I. Psychiatric pharmaceuticals in the environment[J]. Chemosphere, 2009, 77(10):1257-1274
[22]  Shao B, Chen D, Zhang J, et al. Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater[J]. Journal of Chromatography A, 2009, 1216(47):8312-8318
[23]  Matuszewski B K, Constanzer M L, Chavez-Eng C M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS[J]. Analytical Chemistry, 2003, 75(2):3019-3030
[24]  Miao X S, Yang J J, Metcalfe C. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant[J]. Environ Sci Technol, 2005, 39(19):7469-7475
[25]  Lajeunesse A, Gagnon C, Sauveé S. Determination of basic antidepressants and their n-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-Tandem mass spectrometry[J]. Analytical Chemistry, 2008, 80(14):5325-5333
[26]  Zorita S, Martensson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden[J]. Science of the Total Environment, 2008, 407(8):2760-2770
[27]  Bound J P, Kitsou K, Voulvoulis N. Ousehold disposal of pharmaceuticals and perception of risk to the environment[J]. Environmental Toxicology and Pharmacology, 2006, 21(3):301-307
[28]  Ternes T, Bonerz M, Schmidt T. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 938(1/2):175-185
[29]  Ven K, Dongen W V, Maes B U W, et al. Determination of diazepam in aquatic samples by capillary liquid chromatography-electrospray tandem mass spectrometry[J]. Chemosphere, 2004, 57(8):967-973
[30]  Wick A, Fink G, Joss A, et al. Fate of beta blockers and psycho-active drugs in conventional wastewater treatment[J]. Water Research, 2009, 43(4):1060-1074
[31]  Norihide N, Hiroyuki S, Ayako M, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant[J]. Water Research, 2007, 41(19):4373-4382
[32]  Esrafili A, Yamini Y, Shariati S. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids[J]. Analytica Chimica Acta, 2007, 604(2):127-133
[33]  Ito R, Ushiro M, Takahashi Y, et al. Improvement and validation the method using dispersive liquid-liquid microextraction with in situ derivatization followed by gas chromatography-mass spectrometry for determination of tricyclic antidepressants in human urine samples[J]. Journal of Chromatography B, 2011, 879(31):3714-3720
[34]  Mosaviana H, Es'haghib Z, Razavic N, et al. Pre-concentration and determination of amitriptyline residues in waste water by ionic liquid based immersed droplet microextraction and HPLC[J]. Journal of Pharmaceutical Analysis, 2012, 2(5): 361-365
[35]  Togundea O P, Oakesb K D, Servosb M R, et al. Optimization of solid phase microextraction for non-lethal in vivo determination of selected pharmaceuticals in fish muscle using liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2012, 1261(1):99-106
[36]  Unceta N, Gómez-Caballero A, Sánchez A, et al. Simultaneous determination of citalopram, fluoxetine and their main metabolites in human urine samples by solid-phase microextraction coupled with high-performance liquid chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46(4):763-770
[37]  Bakera D, Hordernb B K. Multi-residue determination of the sorption of illicit drugs and pharmaceuticals to wastewater suspended particulate matter using pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218 (44):7901-7913
[38]  Calisto V, Domingues M R, Esteves V I. Photodegradation of psychiatric pharmaceuticals in aquatic environments—Kinetics and photodegradation products[J]. Water Research, 2011, 45(18):6097-6106
[39]  Kwon J W, Armbrust K L. Laboratory persistence and fate of fluoxetine in aquatic environments[J]. Environmental Toxicology and Chemistry, 2006, 25(10):2561-2568
[40]  Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? [J]. Environmental Health Perspectives, 1999, 107(6):907-938
[41]  贾瑷,胡建英,孙建仙,等. 环境中的医药品与个人护理品[J]. 化学进展,2009,21(3):389-399
[42]  S?rensen B H, Nielsen S N, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environmentA review[J]. Chemosphere, 1998, 36(2):357-393
[43]  Top 200 Drugs-U.S. Only. . http://www.rxlist.com/script/main/hp.asp
[44]  付卫红,吉中孚,杨贵刚,等. 住院精神病患者抗精神病药处方调查[J]. 药物流行病学杂志,2010,(3):149-151
[45]  Ven K V, Keil D, Moens L N, et al. Effects of the antidepressant mianserin in zebrafish: Molecular markers of endocrine disruption[J]. Chemosphere, 2006, 65(10):1836-1845
[46]  Henry T B, Kwon J W, Armbrust K L, et al. Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia[J]. Environmental Toxicology and Chemistry, 2004, 23(9):2229-2233
[47]  Pascoe D, Karntanut W, Müller C T. Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarian Hydra vulgaris[J]. Chemosphere, 2003, 51(6):521-528
[48]  Richards S M, Cole S E. A toxicity and hazard assessment of fourteen phanmacenticals to Xenopus Laevis Larvaz[J]. Ecotoxicology, 2006, 15(8): 647-656
[49]  Schultz M M, Furlong E T, Kolpin D W, et al. Antidepressant pharmaceuticals in two US effluent-impacted streams: Occurrence and fate in water and sediment, and selective uptake in fish neural tissue[J]. Environmental Science & Technology, 2010, 44(6):1918-1925
[50]  Wasik A K, Dbska J, Namies'nik J. Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products[J]. TrAC Trends in Analytical Chemistry, 2007, 26(6):557-568
[51]  Kosjek T, Perko S, Zupanc M, et al. Environmental occurrence, fate and transformation of benzodiazepines in water treatment[J]. Water Research, 2012, 46(2):355-368
[52]  Vasskog T, Berger U, Samuelsen P J. Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromso, Norway[J]. Journal of Chromatography A, 2006, 1115(1/2):187-195
[53]  Chu S, Metcalfe C D. Analysis of paroxetine, fluoxetine and norfluoxetine in fish tissues using pressurized liquid extraction, mixed mode solid phase extraction cleanup and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2007, 1163(1/2):112-118
[54]  Vanderford B J, Pearson R A, Rexing D J, et al. Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry[J]. Anal Chem, 2003, 75(22):6265-6274
[55]  Sui Q, Huang J, Deng S B, et al. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China[J]. Water Research, 2010, 44(2):417-426
[56]  Conley J M, Symes S J, Kindelberger S A, et al. Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water[J]. Journal of Chromatography A, 2008, 1185(2):206-215
[57]  Gómeza M J, Petrovic' M, Fernández-Alba A R, et al. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters[J]. Journal of Chromatography A, 2006, 1114(2):224-233
[58]  Furlong E T, Burkhardt M R, Kolpin D, et al. Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry[J]. Journal of Chromatography A, 2004, 1041(1/2):171-180
[59]  Snyder S A. Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water[J]. Ozone-Science & Engineering, 2008, 30(1):65-69
[60]  Baker D R, Hordern B K. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(12):1620-1631
[61]  Tarcomnicu I, Nuijs A, Simons W, et al. Simultaneous determination of 15 top-prescribed pharmaceuticals and their metabolites in influent wastewater by reversed-phase liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2011, 83(3):798-803
[62]  Vanderford B J, Snyder S A. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry[J]. Environmental Science & Technology, 2006, 40(23):7312-7320
[63]  Sousa M A, Goncalves E, Hajlová J, et al. Cleanup strategies and advantages in the determination of several therapeutic classes of pharmaceuticals in wastewater samples by SPE-LC-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2011, 399(2):807-822
[64]  Clara M, Strenna B, Gans O, et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Research, 2005, 39(19):4797-4807
[65]  Xue W C, Wu C Y, Xiao C Y, et al. Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation[J]. Water Research, 2010, 44(20):5999-6010
[66]  Ghambarian M, Yamini Y, Esrafili A. Three-phase hollow fiber microextraction based on two immiscible organic solvents for determination of tricyclic antidepressant drugs: Comparison with conventional three-phase hollow fiber microextraction[J]. Journal of Chromatography A, 2012, 1222(2):5-12
[67]  Bruno J S, Fernando M L, Queiroza M E. Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection[J]. Journal of Chromatography A, 2009, 1216 (49):8590-8597
[68]  Bagheri H, Zandi O, Aghakhani A. Reprint of: Extraction of fluoxetine from aquatic and urine samples using sodium dodecyl sulfate-coated iron oxide magnetic nanoparticles followed by spectrofluorimetric determination[J]. Analytica Chimica Acta, 2012, 716:61-65
[69]  Redshaw C H, Cooke M P, Talbot H M, et al. Low biodegradability of fluoxetine HCl, diazepam and their human metabolites in sewage sludge-amended soil[J]. Journal of Soils and Sediments, 2008, 8(4):217-230

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133