全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

MnO2-r-GO修饰阴极对沉积型微生物燃料电池(MFC)产电性能的影响

Keywords: 沉积型微生物燃料电池(SMFC),阴极修饰,二氧化锰(MnO2),石墨烯(r-GO)

Full-Text   Cite this paper   Add to My Lib

Abstract:

考察了MnO2-石墨烯(r-GO)修饰阴极对沉积型微生物燃料电池(SMFC)的产电性能和体系有机质去除率的影响.实验结果表明,采用MnO2和r-GO对SMFC阴极进行复合修饰,运行稳定后,MnO2-r-GO修饰阴极体系与空白阴极体系相比,最高产电电压从65.2mV增大到325.7mV;最大功率密度由0.28mW·m-2增大到17.4mW·m-2,并且体系的内阻由1157Ω显著降低到159Ω;空白阴极体系和MnO2-r-GO修饰阴极体系的COD去除率和氨氮(NH4+-N)去除率分别由25.8%和27.3%增大到37.0%和32.7%.

References

[1]  Song T S, Yan Z S, Zhao Z W, et al. Construction and operation of freshwater sediment microbial fuel cell for electricity generation [J]. Bioprocess and Biosystems Engineering, 2011, 34: 621-627
[2]  Yang S Q, Jia B Y, Liu H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell [J]. Bioresource Technology, 2009, 100 (3): 1197-1202
[3]  孙瑾华,刘建好,黄呈珠,等.二氧化锰为阴极催化剂的微生物燃料电池 [J]. 电源技术,2008,32(12):838-840,844
[4]  Lu M, Kharkwal S, Ng H Y, et al. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells [J]. Biosensors and Bioelectronics, 2011, 26: 4728-4732
[5]  吴嫤妤,赵娟,李秀芬,等.基于pH值调控的沉积型微生物燃料电池(SMFC)运行特性 [J].环境化学,2011,30 (6):1162-1167
[6]  Zou Y J, Pisciotta J, Baskakov I V. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells [J]. Bioelectrochemistry, 2010, 79: 50-56
[7]  Zhao F, Slade R C T, Varcoe J R. Techniques for the study and development of microbial fuel cells: an electrochemical perspective [J]. Chemical Society Reviews, 2009, 138: 1926-1939
[8]  赵书菊,岳学海,郭庆杰,等.厌氧流化床单室无膜微生物燃料电池性能研究 [J].环境化学,2010,29 (4):700-704
[9]  王万成,陶冠红.微生物燃料电池运行条件的优化 [J].环境化学,2008,27 (4):527-530
[10]  Hai P T, Jang J K, Chang I S, et al. Improvement of cathode reaction of a mediatorless microbial fuel cell [J]. Journal of Microbiology and Biotechnology, 2004, 14 (2): 324-329
[11]  Zhang L, Liu C, Zhuang L, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells [J]. Biosensors and Bioelectronics, 2009, 24: 2825-2829
[12]  Liu X W, Sun X F, Huang Y X, et al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater [J]. Water Research, 2010, 44: 5298-5305
[13]  Roche I, Katuri K, ScottK. A microbial fuel cell using manganese oxide oxygen reduction catalysts [J]. Journal of Applied Electrochemistry, 2010, 40: 13-21
[14]  Xiao L, Damien J, Luo J Y, et al. Crumpled graphene particles for microbial fuel cell electrodes [J]. Journal of Power Sources, 2012, 208: 187-192
[15]  Zhou X F, Liu Z P. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets [J]. Chemical Communications, 2010, 46: 2611-2613
[16]  Mishra A K, Ramaprabhu S. Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture [J]. Journal of Materials Chemitry, 2012, 22(9): 3708-3712
[17]  Kim J R, Zuo Y, Regan J M, et al. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater [J]. Biotechnology and Bioengineering, 2008, 99(5): 1120-1127

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133