全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

FR-CNTs-PbO2/SnO2-Sb/Ti电极性能及电催化降解罗丹明B

Keywords: 碳纳米管,氧化铅,电化学降解,罗丹明B

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用碳纳米管(CNTs)的优异性能和氟树脂(FR)的憎水性能,采用电化学共沉积法制备掺杂型FR-CNTs-PbO2/SnO2-Sb/Ti复合电极.运用扫描电子显微镜(SEM)和X射线衍射(XRD)仪对该电极的形貌和组成进行表征,采用接触角仪和阳极极化曲线对电极的电化学性能进行考察.结果表明,该电极比FR-PbO2/SnO2-Sb/Ti和PbO2/SnO2-Sb/Ti电极具有更强的憎水性能和更高的O2析出电位,这将有利于提高电极的电催化性能和电流利用效率.将FR-CNTs-PbO2/SnO2-Sb/Ti电极应用于罗丹明B(RhB)的降解研究,30mA·cm-2电流密度下,处理10μmol·L-1RhB15min,RhB去除率高达90.21%.相同条件下,FR-PbO2/SnO2-Sb/Ti电极对RhB的去除率仅为69.08%.且FR-CNTs-PbO2/SnO2-Sb/Ti电极的反应速率常数为0.2215min-1,是FR-PbO2/SnO2-Sb/Ti电极(k=0.1191min-1)的近2倍.由此可见,较强的憎水性和较高的析氧电位,增强了FR-CNTs-PbO2/SnO2-Sb/Ti电极的电化学性质和电催化效果.

References

[1]  Zhou M H, Wu Z C, Wang D H, Electrocatalytic degradation of phenol in acidic and saline wastewater [J]. Journal of Environmental Science and Health, 2002, 37(7): 1263-1275
[2]  Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862
[3]  Wang J, Qi X, Meng F, et al. Polyaniline nanofibers: Inducing action of neodymium oxide and inhibiting effect on electrochemical degradation and modified platinum electrode application to the electrocatalytic oxidation of methanol [J]. Journal of Physical Chemistry, 2009, 113(4): 1459-1465
[4]  Candido L, Antonio J, Gomes P. Evaluation of anode materials for the electro-oxidation of ammonia and ammonium ions [J]. Materials Chemistry and Physics, 2011, 129(3): 1146-1151
[5]  Panizza M, Cerisola G. Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 1. Cyclic voltammetry and potential step experiments [J]. Electrochimica Acta, 2003, 48(23): 3491-3497
[6]  Yang X P, Zou R Y, Huo F, et al. Preparation and characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol [J]. Journal of Hazardous Materials, 2009, 164(1): 367-373
[7]  Zhou M H, Srkk H, Sillanp M, et al. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes [J]. Separation and Purification Technology, 2011, 78(3): 290-297
[8]  Panizza M, Cerisola G, Electrochemical degradation of Methyl Red using BDD and PbO2 anodes [J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 6816-6820
[9]  Liu Y, Liu H L. Comparative studies on the electrocatalytic properties of modified PbO2 anodes [J]. Electrochimica Acta, 2008, 53(16): 5077-5083
[10]  Zhu X P, Ni J R, Li H N, et al. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes [J]. Electrochimica Acta, 2010, 55(20): 5569-5575
[11]  Imamura K, Senna M. Difference between mechanochemical and thermal processes of polymorphic transformation of ZnS and PbO [J]. Materials Research Bulletin, 1984, 19(1): 59-65
[12]  Liu L, Zhao G H, Wu M F, et al. Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes [J]. Journal of Hazardous Materials, 2009, 168(1): 179-186
[13]  Tahar N B, Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/PbO2 anode [J]. Journal of the Electrochemical Society, 1998, 145(10): 3427-3434
[14]  Kirk D W, Shrifian H, Foulkes F R. Anodic oxidation of aniline for waste water treatment [J]. Journal of Applied Electrochemistry, 1985, 15(2): 285-292
[15]  Szpyrkowicz L, Kaul S N, Neti R N, et al. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater [J]. Water Research, 2005, 39(8): 1601-1613
[16]  Awad H S, Abo Galwa N. Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors [J]. Chemosphere, 2005, 61(9): 1327-1335
[17]  Cao J L, Zhao H Y, Cao F H, et al. Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes [J]. Electrochimica Acta, 2009, 54(9): 2595-2602
[18]  Samet Y, Chaabane Elaoud S, Ammar S, et al. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes [J]. Journal of Hazardous Materials, 2006, 138(3): 614-619
[19]  Andrade L S, Rocha-Filho R C, Bocchi N, et al. Degradation of phenol using Co- and Co,F-doped PbO2 anodes in electrochemical filter-press cells [J]. Journal of Hazardous Materials, 2008, 153(1/2): 252-260
[20]  Devilliers D, Mahé E. Modified titanium electrodes: Application to Ti/TiO2/PbO2 dimensionally stable anodes [J]. Electrochimica Acta, 2010, 55(27): 8207-8214
[21]  Wang Y, Shen Z, Chen X C. Effects of experimental parameters on 2,4-dichlorphenol degradation over Er-chitosan-PbO2 electrode [J]. Journal of Hazardous Materials, 2010, 178(1/3): 867-874
[22]  Sires I, Brillas E, Cerisola G, et al. Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO2 as high oxidation power anodes [J]. Journal of Electroanalytical Chemistry, 2008, 613(2): 151-159
[23]  Wang Y Q, Gu B, Xu W L, Electro-catalytic degradation of phenol on several metal-oxide anodes [J]. Journal of Hazardous Materials, 2009, 162(2/3): 1159-1164
[24]  Zhao G H, Zhang Y G, Lei Y Z, et al. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability [J]. Environmental Science & Technology, 2010, 44(5): 1754-1759
[25]  Roos J R, Celis J P, Fransaer J, et al. The development of composite plating for adwanced materials [J]. The Journal of the Minerals, Metals & Materials Society, 1990, 42(11): 60-63
[26]  Hu F P, Cui G F, Wei Z D, et al. Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes [J]. Electrochemistry Communications, 2008, 10(9): 1303-1306
[27]  Ravindran K, Heerman L, Simaeys L V, et al. The anodic behaviour of lead in acid sulphate solutions. Influence of manganese ions and electrochemical oxidation of manganese ions at lead anodes [J]. Bulletin des Sociétés Chimiques Belges, 1975, 84(1/2): 83-90
[28]  Polcaro A M, Palmas S, Renoldi F, et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants [J]. Electrochimica Acta, 2000, 46(2): 389-394
[29]  Shiraishi S, Kurihara H, Tsubota H, et al. Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene [J]. Electrochemical and Solid State Letters, 2001, 4(1): A5-A8
[30]  Luo Z Z, Zhang Z Z, Wang W J, et al. Effect of polytetrafluoroethylene gradient-distribution on the hydrophobic and tribological properties of polyphenylene sulfide composite coating [J]. Surface & Coatings Technology, 2009, 203(10/11): 1516-1522
[31]  Murphy O J, Hitchens D G, Kaba L, et al. Direct electrochemical oxidation of organics for wastewatertreatment [J]. Water Research, 1992, 26(4): 443-451

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133