全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

镉对油菜幼苗硫吸收、转运和分布的影响

Keywords: ,油菜幼苗,吸收,转运,,分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用营养液培养-同位素示踪法研究了镉(Cd2+浓度为10μmol·L-1和50μmol·L-1)对油菜幼苗(秦油9号)硫吸收、转运和分布的影响.结果表明,镉处理促进了油菜植株对硫的吸收.10μmol·L-1镉处理96h油菜植株比对照组吸收的硫增加了36%,而且促进了硫向地上部的转运,有39.4%的硫被转运到植株的地上部,转运速率较对照组增加了50%.相同时间内,50μmol·L-1镉处理的油菜植株中的硫仅比对照组多3%,转运速率显著下降,但仍有25.9%的硫被转运至地上部.

References

[1]  Tschuschke S, Schmitt-Wrede H P, Greven H, et al. Cadmium resistance conferred to yeast by a non-metallothionein-encoding gene of the earth worm Enchytraeus [J]. Biological Chemistry, 2002, 277(7): 5120-5125
[2]  Adams M L, Zhao F J, McGrath S P, et al. Predicting cadmium concentrations in wheat and barley grain using soil properties[J]. J Environ Qual, 2004, 33:532-541
[3]  蓝崇钰, 束文圣, 刘威. 宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报, 2003, 48: 2046-2049
[4]  Sun X M, Lu B, Huang S Q, et al. Coordinated expression of sulfate transporters and its relation with sulfur metabolites in Brassica napus exposed to cadmium[J]. Botanical Studies, 2007,48:43-54
[5]  Arthur E, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain [J]. International J Phytoremediation, 2000, 2(1):1-21
[6]  Gill S S, Tutejia N. Cadmium stress tolerance in crop plants probing the role of sulfur [J]. Plant Signaling Behavior, 2011, 6(2): 215-222
[7]  Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae) [J]. New Phytologist, 1994, 127: 61-68
[8]  Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance) [J]. Plant Soil, 2004, 259: 181-189
[9]  魏树和, 周启星, 王新,等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L.) [J]. 科学通报, 2004, 49(24): 2568-2573
[10]  苏德纯, 黄焕忠. 油菜作为超积累植物修复镉污染土壤的潜力研究[J]. 中国环境科学, 2002, 22(1): 48-51
[11]  Bert V, Meerts P, Saumitou-Laprade P, et al. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri [J]. Plant and Soil, 2003, 249: 9-18
[12]  Stolt J P, Sneller F E C, Bryngelssoon T, et al. Phytochelatin and cadmium accumulation in wheat [J]. Environmental and Experimental Botany, 2003, 49: 21-28
[13]  Nocito F F, Lancilli C,Crema B, et al. Heavy metal stress and sulfate update in maize roots[J]. Plant Physiol, 2006 141:1138-1148
[14]  Khan N A, Singh S, Umar S. Sulfur assimilation and abiotic stress in plants [M]. Berlin/Heidelberg: Springer-Verlag, 2008
[15]  Heiss S, Schafer H J, Haag-Kerwer A, et al. Cloning sulfur assimilation genes of Brassica juncea L.: Cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase[J]. Plant Mol Biol, 1999, 39: 847-857
[16]  Haradaa E, Yamaguchia Y, Koizumia N, et al. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis[J]. J Plant Physiol, 2002,159: 445-448
[17]  Yamaguchi H, Fukuoka H, Arao T, et al. Gene expression analysis in cadmium-stressed roots of a low cadmium accumulating solanaceous plant, Solanum torvum[J]. Journal of Experimental Botany, 2010, 61: 423-437
[18]  GunNam Na, David E Salt. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants.[J] Environ and Experimental Botany, 2011,72:18-25
[19]  Holmes M R J. Nutrition of the oilseed rape crop [J]. Applied Science Publishers Ltd London, 1980: 101-121

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133