Lahlou M, Ortega-calvo J J. Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions[J]. Environl Sci Technol, 1998, 18(12): 2729-2735
[2]
Goldberg E D. Black carbon in the environment: Properties and Distribution[M]. John Wiley, New York, 1985: 38-40
Goldberg E D. Black Carbon in the Environment (Environmental Science and Technology Series)[M].John Wiley&Sons lnc, 1985: 216
[5]
Kuhlbusch T A J, Crutzen P J. Black carbon, the global carbon cycle, and atmospheric carbon Dioxide[C]//Levane J S eds. Bioemass Burning and Global Change[M]. M I T Press, Cambridge M A, 1996, 1: 160-169
[6]
Yang Y, Sheng G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environl Sci Technol, 2003, 37(16): 3635-3639
[7]
Cornelissen G, Kukulsaka Z, Kalaitzidis S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environl Sci Technol, 2004, 38(13): 3632-3640
[8]
Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: Mechanistic considerations[J]. Environ Sci Technol, 2002, 36 (17): 3725-3734
[9]
Obst M, Grathwohl P, Kappler A, et al. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles[J]. Environ Sci Technol, 2011, 45(17): 7314-7322
[10]
Ji L L, Wan Y Q, Zheng S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption[J]. Environ Sci Technol, 2011, 45(13): 5580-5586
[11]
Lohmann R, Macfarlane J K, Gschwend P M. On the importance of black carbon to sorption of PAHs, PCBs and PCDDs in Boston and New York Harbor sediments[J]. Environ Sci Technol, 2005, 39(1): 141-148
[12]
Zhang J H, He M C. Predicted models for phenanthrene sorption nonlinearity and capacity based on different HA/BC ratios in sediments[J]. J Colloid Interf Sci, 2009, 337(2): 338-344
[13]
Yu X Y, Ying G G, Rai S K. Sorption and desorption behaviors of diuron in soils amended with charcoal[J]. J Agric Food Chem, 2006, 54(22): 8545-8550
[14]
Li L, Quinlivan P A, Knappe N U. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties[J]. Environ Sci Technol, 2005, 39(9): 3393-3400
[15]
Weber J R, Mcginley P M, Katz L E. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments[J]. Environ Sci Technol, 1992, 26(10): 1955-1962
[16]
Chen W, Kan A T, Tomson M B. Irreversible adsorption of chlorinated benzenes to natural sediments: Implication for sediment quality criteria[J]. Environ Sci Technol, 2000, 34(3): 385-392
[17]
Lu Y, Pignatello J J. Demonstration of the "Conditioning Effect" in soil organic matter in support of a pore deformation mechanism foe sorption hysteresis[J].Environ Sci Technol, 2002, 36: 4553-4561
[18]
Cornelissen G, vanNoort P C M, Govers H A J. Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with tenaxt and effects of contact time and solute hydrophobicity[J]. Environ Toxicol Chem, 1997, 16(7): 1351-1357
Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions[J]. Environ Toxicol Chem, 1990, 9(9): 1107-1115
[21]
You J, Pehkonen S, Landrum P F, et al. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by Tenax absorbent and matrix solid-phase microextraction[J]. Environ Sci Technol, 2007, 41(16): 5672-5678
[22]
Cornelissen G, Van noort P C M, Parsons J R, et al. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments[J]. Environ Sci Technol, 1997b, 31(2): 454-460
[23]
Van noort P C M, Cornelissen G, ten hulscher T E M, et al. Slow and very slow desorption of organic compounds from sediment: Influence of sorbate planarity[J]. Water Res, 2003, 37(10): 2317-2322
[24]
Lou L P, Cheng G H, Deng J Y, et al. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment[J]. Environ Pollu, 2014, 190: 101-108
[25]
Chai Y Z, Qiu X J, Davis J W, et al. Effects of black carbon and montmorillonite clay on multiphasic hexachlorobenzene desorption from sediments[J]. Chemosphere, 2007, 69(8):1204-1212
[26]
Cornelissen G, Rigterink H, ten Hulscher T E M, et al. Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminated sediment[J].Chemosphere, 1997, 35(10): 2405-2416
[27]
Zimmerman J R, Ghosh U, Millward R N, et al. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical tests[J]. Environ Sci Technol, 2004, 31: 203-209
[28]
Meador J P, Adams N G, Casillas E, et al. Comparative bioaccumulation of chlorinated hydrocarbons from sediment by two infaunal invertebrates[J]. Arch Environ Contam Toxicol, 1997, 33: 388-400
[29]
Mcleod P B, Van den Heuvel-Greve M J, Allen-King R M, et al. Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and,2',5,5'-tetrachlorobiphenyl to the clam, Macomabalthic[J]. Environ Sci Technol, 2004, 38:4549-4556
[30]
Bradley P M, Barber L B, Kolpin D W, et al. Potential for 4-n-nonylphenol biodegradation in stream sediments[J]. Environ Toxicol Chem, 2008, 27: 260-265
[31]
Düring R A, Krahe S, G?th S. Sorption behavior of nonylphenol in terrestrial soils[J]. Environ Sci Technol, 2002, 36: 4052-4057
[32]
Zhang P, Sheng G Y, Feng Y C, et al. Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: Nutritional stimulation versus adsorptive inhibition[J]. Environ Sci Technol, 2005, 39: 5442-5448
[33]
Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biotae -A review[J]. Soil Biol Biochem, 2011, 43: 1812-1836
[34]
Lin Y H, Lin W F, Jhang K N, et al. Adsorption with biodegradation for decolorization of reactive black 5 by Funalia trogii 200800 on a fly ash-chitosan medium in a fluidized bed bioreactor-kinetic model and reactor performance[J]. Biodegr, 2013, 24: 137-152
[35]
Rhodes A H, Carlin A, Semple K T. Impact of black carbon in the extraction and mineralization of phenanthrene in soil[J]. Environ Sci Technol, 2008, 42: 740-745
Marchal G, Smith K E C, Rein A, et al. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost[J]. Chemosphere, 2013, 90: 1767-1778
[38]
Das P, Mukherjee S, Sen R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin[J]. Chemosphere, 2008, 72: 1229-1234
[39]
Vasilyeva G K, Strijakova E R, Shea P J. Use of activated carbon for soil bioremediation[J]. Soil Water Pollu Monit Prote Remed, 2006, 3-23: 309-322
[40]
Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environl Sci Technol, 1997,31(12): 3341-3347
[41]
Forbes M S, Raison R J, Skiemstad J O. Formation,transformation and transport of black carbon (charcoa1) in terrestrial and aquatic ecosystems[J]. Sci Total Environ, 2006, 370(1): 190-206
[42]
Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environl Sci Technol, 2005, 39(18): 6881-6895
[43]
Schmidt M W I, Noack A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J]. Global Biogeochem Cycles, 2000, 14(3): 777-793
[44]
Bucheli T D, Gustaffson ?. Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations[J]. Environl Sci Technol, 2000, 34(24): 5144-5151
[45]
Cochrane M A. Fire science for rainforests[J]. Nature, 2003, 421(6926): 913-919
[46]
Dichens A F,Gelinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972): 336-339
[47]
Kuhlbusch T A. Black carbon and the carbon cycle[J]. Science, 1998, 280(5371): 1903-1904
[48]
Choi H, Al-Abed S R. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism[J]. J Hazard Mater, 2009, 165(1/3): 860-866
[49]
Hilton H W, Yuen Q H. Soil adsorption of herbicides, adsorption of serveral pre-emergence herbicides by hawaiian sugar cane soils[J]. J Agric Food Chem, 1963, 11(3): 230-234
[50]
Prevedouros K, Anna P C, Gustafsson ?, et al. Development of a black carbon-inclusive multi-media model: Application for PAHs in Stockholm[J]. Chemosphere, 2008, 70(4): 607-615
[51]
Chun Y, Sheng G G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived[J]. Environl Sci Technol, 2004, 38(17):4649-4655
[52]
van Noort P C M, Jonker M T O, Koelmans A A. Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs[J]. Environ Sci Technol, 2004, 38(12): 3305-3309
[53]
Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environ Sci Technol, 2004, 38(13): 3574-3580
[54]
Cornelissen G, Haftka J, Parsons J, et al. Sorption to black carbon of organic compounds with varying polarity and planarity[J]. Environ Sci Technol, 2005, 39(10): 3688-3694
[55]
B?rring H, Bueheli T D, Broman D, et al. Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenylethers determined with the soot cosolvency-column method[J].Chemosphere, 2002, 49(6): 515-523
[56]
Ghosh U, Gillette J S, Luthy R G, et al. Microscale location, characterization, and associations of polycyclic aromatic hydrocarbons on harbor sediment particles[J]. Environ Sci Technol, 2000, 34(9): 1729-1736
[57]
Cornelissen G, Gustafsson ?. Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sediments[J]. Environ Sci Technol, 2005, 39(3): 764-769
[58]
Chen Z M, Chen B L, Zhou D D, et al. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures[J]. Environ Sci Technol, 2012, 46(22): 12476-12483
[59]
Kleineidam S, Schuth C, Grathwohl P. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants[J]. Environ Sci Technol, 2002, 36(21): 4689-4697
[60]
Qiu Y P, Cheng H Y, Xu C, et al. Surface characteristics of crop-residue-derived black carbon and lead (Ⅱ) adsorption[J]. Water Res, 2008, 42(3): 567-574
[61]
Limousin G, Gaudet J P, Charlet L, et al. Sorption isotherms: A review on physical bases, modeling and measurement[J]. Appl Geochem, 2007, 22(2): 249-275
[62]
Kan A T, Fu G, Tomson M B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction[J]. Environ Sci Technol, 1994, 28(5): 859-867
[63]
Water J, Weber Jr, Huang W L, et al. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 2. Effects of soil organic matter heterogeneity[J]. J Contam Hydrol, 1998, 31: 149-165
[64]
Sander M, Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter[J]. Environ Sci Technol, 2005, 39: 7476-7484
[65]
Nguyen T H, Cho H H, Poster D L, et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char[J]. Environ Sci Technol, 2007, 41: 1212-1217
[66]
Huang W L, Yu H, Water J, et al. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 1. A comparative analysis of experimental protocols[J]. J Contam Hydrol, 1998, 31: 129-148
Xia G, Ball W P. Adsorption-partitioning uptake of nine low polarity organic chemicals on a natural sorbent[J]. Environ Sci Technol, 1999, 33: 262-269
[69]
Cornelissen G, Rigterink H, Van Noort P C M, et al. Slowly and very slowly desorbing organic compounds in sediments exhibit Langmuir-type sorption[J]. Environ Toxicol Chem, 2000, 19: 1532-1539
[70]
Ghosh U, Talley J W, Luthy R G. Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment[J]. Environ Sci Technol, 2001, 35(17): 3468-3475
[71]
Hilber I, Bucheli T D, Wyss G S, et al. Assessing the phytoavailability of dieldrin residues in charcoal-amended soil using tenax extraction[J]. J Agric Food Chem, 2009, 57(10): 4293-4298
[72]
Cheng G H, Zhu L C H, Sun M Y, et al. Desorption and distribution of pentachlorophenol (PCP) on aged black carbon-inclusive sediment[J]. J Soil Sediment, 2014, 14: 344-352
[73]
Johnson M D, Keinath T M, Weber W J. A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates[J]. Environ Sci Technol, 2001, 35 (8): 1688-1695
[74]
Li J, Sun H, Zhang Y. Desorption of pyrene from freshly-amended and aged soils and its relationship to bioaccumulation in earthworms[J].Soil Sediment Contam, 2007, 16(1): 79-87
[75]
Comelissen G, Breedveld G D,Naes K,et al. Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: Freely dissolved concentrations and activated carbon amendment[J]. Environ Toxicol Chem, 2006, 25: 2349-2355
[76]
Rust A J, Burgess R M, Mcelroy A E. Influence of soot carbon on the bioaccumulation of sediment-bound polycyclic aromatic hydrocarbons by marine benthic invertebrates: An interspecies comparison[J]. Environ Toxicol Chem, 2004, 23(11): 2594-2603
[77]
Chai Y Z, Currie, R J, Davis, J W, et al. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo- p -dioxins/dibenzofurans in soils[J]. Environ Sci Technol, 2012, 46: 1035-1043
[78]
Shen M H, Xia X H, Zhai Y W, et al. Influence of carbon nanotubes with preloaded and coexisting dissolved organic matter on the bioaccumulation of polycyclic aromatic hydrocarbons to chironomus plumosus larvae in sediment[J]. Environ Toxicol Chem, 2014, 33(1): 182-189
[79]
Meynet P, Hale S E, Davenport R J. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil[J]. Environ Sci Technol, 2012, 46: 5057-5066
[80]
Jin H. Characterization of microbial life colonizing biochar and biochar-amended soils[D]. Cornell University, Ithaca, NY, 2010
[81]
Ehrhardt H M, Rehm H J. Phenol degradation by microorganisms adsorbed on activated carbon[J]. Appl Microbiol Biot, 1985, 21: 32-36
[82]
Cornelissen G, Rigterink H, Ferdinandy M M A, et al. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation[J]. Environ Sci Technol, 1998, 32: 966-970
[83]
Leglize P, Saada A, Berthelin J, et al. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria[J]. J Hazard Mater, 2008, 151: 339-347
[84]
Cui X Y, Hunter W, Yang Y, et al. Biodegradation of pyrene in sand, silt and clay fractions of sediment[J]. Biodegr, 2011, 22: 297-307
[85]
Zhang P, Sheng G Y, Wolf D C, et al. Reduced biodegradation of benzonitrile in soil containing wheat-residue-derived ash[J]. J Environ Qual, 2004, 33: 868-872
[86]
Bushnaf K M, Puricelli S, Saponaro S, et al. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil[J]. J Contam Hydrol, 2011, 126: 208-215
[87]
Vasilyeva G K, Kreslavski V D, Oh B T, et al. Potential of activated carbon to decrease 2,4,6-trinitritoluene toxicity and accelerate soil decontamination[J]. Environ Toxicol Chem, 2001, 20: 965-971