全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

纳米氧化石墨烯对水中锶的吸附特征

Keywords: 纳米氧化石墨烯,,表面增强拉曼,红外,吸附

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用纳米氧化石墨烯(GO)吸附放射性废水中Sr2+,从吸附原理、吸附动力学、pH对吸附的影响等方面对吸附过程进行研究.采用表面增强拉曼技术和红外光谱对Sr2+在GO表面的吸附进行光谱表征.将GO负载到活性炭表面进行柱实验探索GO在废水处理中的应用.结果表明,在pH值为6.0-6.5时GO对Sr2+的吸附符合Langmuir吸附模型,最大吸附量263.16mg·g-1.GO对Sr2+的吸附符合拟二级动力学方程.在pH3-11范围内吸附量随着pH升高显著增大.GO对Sr2+的吸附具有快速,吸附量大,适用pH范围广的特点,可大量用于放射性废水的处理.GO负载到活性炭上后吸附量有所下降,但克服了GO材料本身在水中粒径小难分离的缺陷,是一种可实际应用、去除环境中Sr2+的新方法.

References

[1]  Sun Y, Wang Q, Chen C, et al. Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology, 2012, 46(11): 6020-6027
[2]  Romanchuk A Y, Slesarev A S, Kalmykov S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2321-2327
[3]  Sun Y, Yang S, Sheng G, et al. Removal of U (Ⅵ) from aqueous solutions by the nano-iron oxyhydroxides[J]. Radiochimica Acta, 2012, 100(10): 779-784
[4]  Tan X, Wang X, Fang M, et al. Sorption and desorption of Th (Ⅵ) on nanoparticles of anatase studied by batch and spectroscopy methods[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1): 109-116
[5]  Sitko R, Turek E, Zawisza B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Trans, 2013, 42(16): 5682-5689
[6]  Zhao G, Li J, Ren X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental science & technology, 2011, 45(24): 10454-10462
[7]  Xu W, Mao N, Zhang J. Graphene: A platform for surface-enhanced Raman spectroscopy[J]. Small, 2013, 9(8): 1206-1224
[8]  Ferrari A, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20), 14095
[9]  Lee D, De Los Santos V L, Seo J, et al. The structure of graphite oxide: Investigation of its surface chemical groups[J]. The Journal of Physical Chemistry B, 2010, 114(17): 5723-5728
[10]  Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds(4th ed)[M]. New York: John Wiley & Sons, 1986: 231-233
[11]  Singh S, Eapen S, Thorat V, et al. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides[J]. Ecotoxicology and Environmental Safety, 2008, 69(2): 306-311
[12]  Ma B, Oh S, Shin WS, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1): 336-346
[13]  García-Ruiz S, Moldovan M, Fortunato G, et al. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders[J]. Analytica Chimica Acta, 2007, 590(1): 55-66
[14]  Gu B, Ku Y K, Jardine P M. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin[J]. Environmental Science & Technology, 2004, 38(11): 3184-3188
[15]  Jain V, Handa A, Sait S, et al. Pre-concentration, separation and trace determination of lanthanum (Ⅲ), cerium (Ⅲ), thorium (Ⅳ) and uranium (Ⅳ) on polymer supported o-vanillinsemicarbazone[J]. Analytica Chimica Acta, 2001, 429(2), 237-246
[16]  Kasap S, Piskin S, Tel H. Titanate nanotubes: Preparation, characterization and application in adsorption of strontium ion from aqueous solution[J]. Radiochimica Acta, 2012, 100(12): 925-929
[17]  Shao D, Jiang Z, Wang X, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. The Journal of Physical Chemistry B, 2009, 113(4): 860-864
[18]  Chen C, Wang X, Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environmental Science & Technology, 2009, 43(7): 2362-2367
[19]  Mellah A, Chegrouche S, Barkat M. The removal of uranium (Ⅵ) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations[J]. Journal of Colloid and Interface Science, 2006, 296(2): 434-441
[20]  Sun Y, Shao D, Chen C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 2013, 47(17): 9904-9910
[21]  张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276
[22]  Salas E C, Sun Z, Luttge A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS Nano, 2010, 4(8): 4852-4856
[23]  Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127-2150
[24]  Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814
[25]  Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286
[26]  Kyzas G Z, Deliyanni E A, Matis K A. Graphene oxide and its application as an adsorbent for wastewater treatment[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(2): 196-205
[27]  Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7): 3979-3986
[28]  Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857
[29]  Cleasby J L, Logsdon G S. Granular bed and precoat filtration//AWWA. Water Quality and Treatment-A Handbook of Community Water Supplies (5th ed)[M]. New York: Mc G raw Hill, 2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133