全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

BDE17及OH-BDE17暴露对斑马鱼幼鱼的运动行为效应

Keywords: 多溴联苯醚,斑马鱼,神经行为毒性,视黄酸受体,报告基因,分子对接

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用模式动物斑马鱼(Daniorerio)的运动行为实验,评价了在光照-黑暗周期刺激下BDE17(2,2',4-tribromodiphenylether)和4'-OH-BDE17(4'-Hydroxy-2,2',4-tribromodiphenylether)暴露对幼鱼运动行为效应,并利用分子对接技术和荧光素酶报告基因实验探讨了这两种化合物与斑马鱼视黄酸受体的相互作用关系,试图揭示运动行为效应的机制.BDE17暴露没有改变斑马鱼幼鱼的运动行为,而50μg·L-14'-OH-BDE17暴露却造成斑马鱼幼鱼在光照和黑暗条件下均出现运动活跃现象.分子对接结果表明,BDE17和4'-OH-BDE17与斑马鱼视黄酸受体的结合能力都不如视黄酸(Retinoicacid,RA)强.荧光素酶报告基因实验结果表明,与对照组相比,50μg·L-14'-OH-BDE17暴露组荧光素酶活性均显著增加(P<0.05);而BDE17暴露组荧光素酶活性则无显著性差异.这表明4'-OH-BDE17通过直接与视黄酸受体(Retinoicacidreceptors,RARs)结合来诱导视黄酸受体转录活性,而BDE17则不能直接与视黄酸受体发生相互作用.本研究结果表明4'-OH-BDE17暴露可能通过诱导视黄酸受体转录活性,干扰视黄酸动态平衡,造成神经系统发育损伤,进而改变斑马鱼幼鱼的运动行为,而BDE17暴露则不能.

References

[1]  Hooper K, McDonald T A. The PBDEs: An emerging environmental challenge and another reason for breast-milk monitoring programs[J]. Environmental Health Perspectives, 2000, 108(5): 387-392
[2]  Huang K, Lin K F, Guo J, et al. Polybrominated diphenyl ethers in birds from Chongming Island, Yangtze estuary, China: Insight into migratory behavior[J]. Chemosphere, 2013, 91(10): 1416-1425
[3]  Shaw S D, Berger M L, Harris J H, et al. Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California[J]. Chemosphere, 2013, 91(10): 1386-1394
[4]  Ma J, Qiu X H, Zhang J L, et al. State of polybrominated diphenyl ethers in China: An overview[J]. Chemosphere, 2012, 88(7): 769-778
[5]  张利飞, 黄业茹, 董亮.多溴联苯醚在中国的污染现状研究进展[J]. 环境化学, 2010, 29(5): 787-795
[6]  万斌,郭良宏.多溴联苯醚的环境毒理学研究进展[J]. 环境化学, 2011, 30(1): 143-152
[7]  Talsness C E, Andrade A J M, Kuriyama S N, et al. Components of plastic: experimental studies in animals and relevance for human health[J]. Philosophical Transactions of the Royal Society B-Biological Science, 2009, 364(1526): 2079-2096
[8]  Dingemans M M L, van den Berg M, Westerink R H S. Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system[J]. Environmental Health Perspectives, 2011, 119(7): 900-907
[9]  Sonne C. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species[J]. Environment International, 2010, 36(5): 461-491
[10]  Chen L G, Hu C Y, Huang C J, et al. Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2012, 120: 11-18
[11]  Xu T, Chen L G, Hu C Y, et al. Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae[J]. Environmental Toxicology and Pharmacology, 2013, 35(1): 13-20
[12]  Hallgren S, Sinjari T, Hakansson H, et al. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice[J]. Archives of Toxicology, 2001, 75(4): 200-208
[13]  Ellis-Hutchings R G, Cherr G N, Hanna L A, et al. Polybrominated diphenyl ether (PBDE)-induced alterations in vitamin A and thyroid hormone concentrations in the rat during lactation and early postnatal development[J]. Toxicology and Applied Pharmacology, 2006, 215(2): 135-145
[14]  Fernie K J, Shutt J L, Mayne G, et al. Exposure to polybrominated diphenyl ethers (PBDEs): Changes in thyroid vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius)[J]. Toxicological sciences, 2005, 88(2): 375-383
[15]  Niederreither K, Dolle P. Retinoic acid in development: Towards an integrated view[J]. Nature Reviews Genetics, 2008, 9(7): 541-553
[16]  Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system[J]. Nature Reviews Neuroscience, 2007, 8(10): 755-765
[17]  Eddins D, Cerutti D, Williams P, et al. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: Comparison with nicotine and pilocarpine effects and relationship to dopamine deficits[J]. Neurotoxicology and Teratology, 2010, 32(1): 99-108
[18]  Lema S C, Schultz I R, Scholz N L, et al. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47)[J]. Aquatic Toxicology, 2007, 82(4): 296-307
[19]  Chen X J, Huang C J, Wang X C, et al. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish[J]. Aquatic Toxicology, 2012, 120-121: 35-44
[20]  Chen L G, Huang Y B, Huang C J, et al. Acute exposure to DE-71: Effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae[J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2338-2344
[21]  Zhao J, Xu T, Yin D Q. Locomotor activity changes on zebrafish larvae with different 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes[J]. Chemosphere, 2014, 94: 53-61
[22]  Chou C T, Hsiao Y C, Ko F C, et al. Chronic exposure of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2010, 98(4): 388-395
[23]  Usenko C Y, Robinson E M, Usenko S, et al. PBDE developmental effects on embryonic zebrafish[J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1865-1872
[24]  Irons T D, MacPhail R C, Hunter D L, et al. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish[J]. Neurotoxicology and Teratology, 2010, 32(1): 84-90
[25]  Swiss modeler server. SWISS-MODEL[OL].[2014-07-03]. http://swissmodel.expasy.org/
[26]  Hu P, Tian M, Bao J, et al. Retinoid regulation of the Zebrafish cyp26a1 promoter[J]. Developmental Dynamics, 2008, 237(12): 3798-3808
[27]  MacPhail R C, Brooks J, Hunter D L, et al. Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol[J]. Neurotoxicology, 2009, 30(1): 52-58
[28]  Ren X M, Guo L H, Gao Y, et al. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination[J]. Toxicology and Applied Pharmacology, 2013, 268(3): 256-263
[29]  Ren X M and Guo L H. Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways[J]. Environmental Science-Processes & Impacts, 2013, 15(4): 702-708
[30]  任肖敏,张连营,郭良宏.多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014,33(10): 1662-1671
[31]  Wang Y J, Chen J F, Du C C, et al. Characterization of retinoic acid-induced neurobehavioral effects in developing zebrafish[J]. Environmental Toxicology and Chemistry, 2014, 33 (2): 431-437

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133