United States Environmental Protection Agency Research Triangle Park. Enzymatic decontamination of chemical warfare agents[R]. EPA600/R-12/033. 2013. 1
Lucas Oudejans, Barbara Wyrzykowska-Ceradini, Craig Williams, et al. Impact of environmental conditions on the enzymatic decontamination of a material surface contaminated with chemical warfare agent stimulants[J]. Ind. Eng. Chem. Res, 2013, 52:10072-10079.
[5]
Prokop Z, Oplustil F, de Frank J, et al. Enzymes fight chemical weapons[J]. Biotechnol J, 2006, 1:1370-1380.
[6]
TanaKoudelakova, Sarka Bidmanova, Pavel Dvorok, et al. Haloalkanedehalogenases: Biotechnological applications[J]. Biotechnol. J. 2013, 8:32-45.
[7]
Zbynek Prokop, Jiri Damborsky, Frantisek Oplustil, et al. Method of detoxification of yeperite by using haloalkanedehalogenases[P]. US Pantent 7888103, 2011
Prokop Z, Oplustil F, Defrank J, et al. Enzymes fight chemical weapons[J]. Biotechnol J, 2006(1): 1370-1380.
[10]
George O Bizzigotti, Richard P Rhoads, Stephen J Lee, et al. Handbook of chemical and biological warfare agent decontamination[B]. ILM Publications, 2012, USA
[11]
Stepankova Veronika, Damborsky Jiri, Chaloupkova Radka, et al. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases[J]. Biotechnol, 2013, 8: 719-729.
[12]
Vincent Vagenende, Miranda G S Yap, Bernhardt L Trout. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol[J]. Biochemistry, 2009, 48:11084-11096.
[13]
S P Harvey. Enzymatic degradation of HD[R], Edgewood Chemical Biological Center. Aberdeen Proving Ground, MD, 2001, ECBC-TR-220.