全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

基于密度泛函理论揭示Cu2+配位作用对头孢拉定水解反应的影响机制

Keywords: 配位作用,Cu2+,头孢拉定,密度泛函理论,水解

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于密度泛函理论(DFT,Densityfunctionaltheory),计算了水中Cu2+与抗生素头孢拉定的配位作用,发现Cu2+与头孢拉定可形成11配合物,该配合物存在两种形态Cu2+与头孢拉定分子支链氨基氮原子和羰基氧原子配位,同时结合一个水分子;Cu2+与羧基氧原子和内酰胺氧原子配位,同时结合两个水分子.结果表明,Cu2+的配位作用能增大头孢拉定水解反应位点正电荷量,降低水解前线分子轨道能级差和活化能,从而促进头孢拉定水解,该结果得到了实验证实.因此,DFT可用于预测Mn+配位作用对药物和个人护理用品(PPCPs,Pharmaceuticalandpersonalcareproducts)等有机污染物水解的影响,对于PPCPs类有机污染物的生态风险评价具有重要意义.

References

[1]  Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers[J]. Water Research, 1998, 32:3245-3260
[2]  Halling S B, Nors N S, et al. Occurrence, Fate and effects of pharmaceutical substances in the environment-a review[J]. Chemosphere, 1998, 36:357-393
[3]  I.弗莱明. 前线轨道与有机化学反应[M]. 北京:科学出版社, 1988:33-35
[4]  Smith M B. March's advanced organic chemistry:Reactions, mechanisms and structure(7th ed)[M]. New Jersey:John Wiley & Sons, 2013:348-495
[5]  Remington J P, Troy D B, Remington Br P. The science and practice of pharmacy[M]. Maryland:Lippincott Williams & Wilkins, 2006:359-469
[6]  Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry[M]. Canada:John Wiley & Sons, 2003:706-715, 489-554
[7]  Werner J J, Arnold W A, McNeill K. Water hardness as a photochemical parameter:Tetracycline photolysis as a function of calcium concentration,magnesium concentration, and pH[J]. Environmental Science Technology, 2006, 40(23):7236-7241
[8]  Vione D, Feitosa F J, Minero C, et al. Phototransformation of selected human-used macrolides in surface water:Kinetics, model predictions and degradation pathways[J].Water Research, 2009, 43(7):1959-1967
[9]  Najma S, Arayne M S. In vitro activity of cefadroxil, cephalexin, cefatrizine and cefpirome in presence of essential and trace elements[J]. Pakistan Journal of Pharmarmaceutical Sciences, 2007, 20(4):305-310
[10]  Huang C H, Stone A T. Hydrolysis of naptalam and structurally related amides:In hibition by dissolved metal ions and metal(hydr) oxide surafces[J]. Journal of Agricultural and Food Chemistry, 1999, 47:4425-4434
[11]  Eric L H, Stephen H M, Chin L C, et al. Structure-reactivity studies in copper(Ⅱ)-Catalyzed phosphodiester hydrolysis[J]. Inorganic Chemistry, 1999, 38:2961-2968
[12]  Díaz N, Sordo T L, Suárez D, et al. Zn2+ catalysed hydrolysis of β-lactams:Experimental and theoretical studies on the influence of the β-lactam structure[J]. New Journal of Chemistry, 2003, 28:15-25
[13]  华中师范大学等. 分析化学(下册)[M]. 北京:高等教育出版社, 2001:32-49,242-257
[14]  Hernowo E, Artik E A, Fazary A E, et al. Complex stability and molecular structure studies of divalent metal Ion with L-Norleucine and Vitamin B3[J]. Journal of Chemical & Engineering Data, 2011, 56:4549-4555
[15]  Zhang H, Xie H, Chen J, et al. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions:A quantum chemical study on cephradine[J]. Environmental Science Technology, 2015, 49:1552-1558
[16]  Andreozzi R, Caprio V, Ciniglia C, et al. Antibiotics in the environment:Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin[J]. Environmental Science Technology, 2004, 38:6832-6838
[17]  Lin A Y C, Yu T H, Lin C F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams:Risk to aqueous environments in Taiwan[J]. Chemosphere, 2008, 74 (1):131-141
[18]  尉小旋, 陈景文, 王如冰, 等. 氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3):448-454
[19]  Lozano M J, Bomi J. Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn(Ⅱ) and Cd(Ⅱ) ions[J]. Journal of Inorganic Biochemistry, 1987, 9(7):187-195
[20]  Fazakerley G V, Jackson G E. Metal ion coordination by some penicillin and cephalosporin and antibiotics[J]. Journal of Inorganic and Nuclear Chemistry, 1975, 37:2371-2375
[21]  El-Said A I, Aly A A M, EI-Meligy M S, et al. Mixed ligand zinc(Ⅱ) and cadmium(Ⅱ) complexes containing ceftriaxone antibiotics and different donors[J]. J The Journal of the Argentine Chemical Society, 2009, 97(2):149-165
[22]  Bukhari H, Arif M, Akbar J. Preparation, characterization and biological evaluation of Schiff base transition metal complexes with cephradine[J]. Pakistan Journal of Biological Sciences, 2005, 8(4):614-617
[23]  Anacona J R, Faricar A. Synthesis and antibacterial activity of cephradine metal complexes[J]. Journal of Coordination Chemistry, 2006, 59(6):621-627
[24]  Jeffrey H P, Willard W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. The Journal of Chemical Physics, 1985, 82(1):270-283
[25]  Yang Y, Weaver M N, Merz K M. Assessment of the "6-31+G**+LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential:Prediction of heats of formation and ionization potentials for first-row-transition-metal complexes[J]. Journal of Physical Chemistry A, 2009, 113 (36):9843-9851
[26]  Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8):2999-3093
[27]  Mennucci B. Continuum solvation models:What else can we learn from them?[J]. The Journal of Physical Chemistry Letters, 2010, 1 (10):1666-1674
[28]  戴安邦. 配位化学[M]. 北京:科学出版社, 1988:20-40
[29]  Frison G, Ohanessian G. A comparative study of semi empirical, Ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-Biomimetic complexes[J]. Journal of Computational Chemistry, 2008, 29:416-433

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133