全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

冬氨酸二丁二酸醚(AES)诱导黑麦草提取污染土壤重金属的效应

Keywords: 可降解螯合剂,AES,EDTA,植物提取,黑麦草

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盆栽试验,研究新型生物可降解螯合剂冬氨酸二丁二酸醚(AES)和非降解螯合剂乙二胺四乙酸(EDTA)调控下黑麦草修复重金属污染土壤的效应.黑麦草于含2500mgPb·kg-1,500mgCu·kg-1,1000mgZn·kg-1和15mgCd·kg-1的土壤中生长45d后,分别施加5mmol·kg-1土的AES或EDTA.结果表明,AES和EDTA可以显著提高土壤溶液和黑麦草植株地上部Pb、Zn、Cu和Cd的浓度.EDTA对土壤中Pb的溶解能力和对黑麦草积累重金属的促进作用显著强于AES,前者处理的土壤中水提取态Pb浓度和黑麦草地上部Pb浓度分别达到了15.9mg·kg-1和174.1mg·kg-1,显著高于AES处理的2.6mg·kg-1和44.0mg·kg-1.但AES对黑麦草积累Zn和Cd的促进作用较EDTA明显增强,黑麦草地上部Zn浓度达到了1081.8mg·kg-1,显著高于EDTA的776.7mg·kg-1和对照的389.6mg·kg-1;地上部Cd浓度为1.57mg·kg-1,高于EDTA的1.06mg·kg-1和对照的0.69mg·kg-1.与对照相比,AES和EDTA对Cu在土壤中的溶解和黑麦草植株中的积累亦有显著的促进作用,但二者处理无极显著差异.结果表明,生物可降解螯合剂AES在诱导植物修复重金属污染土壤尤其是Zn、Cd污染土壤中有很大的应用潜力,且与EDTA相比,环境风险大大降低.

References

[1]  Salt D E, Smith R D, RaskinⅠ, Phytoremediation[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:643—668
[2]  Blaylock M J, Salt D E, Dushenkov S et al., Enhanced Accumulation of Pb in Indian Mustard by Soil Applied Chelating Agents[J]. Environmental Science & Technology, 1997, 31:860—865
[3]  Vassil A D, Kapulnik Y, Raskin I et al., The Role of EDTA in Lead Transport and Accumulation by Indian Mustard[J].Plant Physiology, 1998, 117:447—453
[4]  Wu L H, Luo Y M, Xing X R et al., EDTA-Enhanced Phytoremediation of Heavy Metal Contaminated Soil with Indian Mustard and Associated Potential Leaching Risk[J]. Agriculture, Ecosystems and Environment, 2004, 102:307—318
[5]  骆永明, 强化植物修复的螯合诱导技术及其环境风险[J]. 土壤, 2000, 2:57—61, 74
[6]  Lombi E, Zhao F J, Dunham S J et al., Phytoremediation of Heavy-Metal Contaminated Soils: Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction[J].Journal of Environmental Quality, 2001, 30:1919—1926
[7]  Luo C L, Shen Z G, Lou L Q et al., EDDs and EDTA-enhanced Phytoextraction of Metals from Artificially Contaminated Soil and Residual Effects of Chelant Compounds[J].Environmental Pollution, 2006,144:862—871
[8]  Shen Z G, Li X D, Wang C C et al., Lead Phytoextraction from Contaminated Soil with High Biomass Plant Species[J].Journal of Environmental Quality, 2002, 31:1893—1900
[9]  Ernst W H O, Bioavailability of Heavy Metals and Decontamination of Soils by Plants[J]. Applied Geochemistry, 1996, 11:163—167
[10]  赵中秋, 朱永官, 蔡运龙, 镉在土壤-植物系统中的迁移转化及其影响因素[J]. 生态环境, 2005,14(2):282—286
[11]  Santos S, Hernández-Allica J, José M, Chelate-Induced Phytoextraction of Metal Polluted Soils with Brachiaria Decumbens Fabiana Becerril[J]. Chemosphere, 2006, 65: 43—50
[12]  刘良栋, 舒俊林, 杨智宽, 壳聚糖和EDTA对污染土壤中Pb的解吸作用研究[J]. 农业环境科学学报, 2006, 25(2):345—348
[13]  Huang J W, Chen J, Berti W R et al, Phytoremediation of Lead-Contaminated Soils: Role of Synthetic Chelates in Lead Phytoextraction[J].Environmental Science & Technology,1997, 31:800—805
[14]  Luo C L, Shen Z G, Li X D, Enhanced Phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS[J].Chemosphere, 2005, 59:1—11[LM]
[15]  Mulligan C N, Yong R N, Gibbs B F, Remediation Technologies for Metal-Contaminated Soils and Groundwater: an Evaluation[J]. Engineering Geology, 2001, 60:193—207
[16]  Huang J W, Cunningham S D, Lead Phytoextraction: Species Variation in Lead Uptake and Translocation[J]. New Phytologist, 1996,134:75—84
[17]  Ebbs S D, Kochian L V, Phytoextraction of Zinc by Oat (Avena sativa), Barley (Hordeum vulgare) and Indian Mustard (Brassica juncea)[J]. Environmental Science & Technology, 1998, 32:802—806
[18]  Kedziorek M A M, Dupuy A, Bourg A C M et al., Leaching of Cd and Pb from a Polluted Soil during the Percolation of EDTA: Laboratory Column Experiments Modeled with a Non-Equilibrium Solubilization Step[J]. Environmental Science & Technology, 1998, 32:1609—1614
[19]  Madrid F, Liphadzi M S, Kirkham M B, Heavy Metal Displacement in Chelate-Irrigated Soil during Phytoremediation[J].Journal of Hydrology, 2003,272:107—119
[20]  Jones P W, Williams D R, Chemical Speciation Used to Assess [S,S']-Ethylenediaminedissuccinic Acid (EDDS) as a Readily-Biodegradable Replacement for EDTA in Radiochemical Decontamination Formulations[J].Applied Radiation and Isotopes, 2001,54:587—593
[21]  Kos B, Lestan D, Influence of a Biodegradable ([S,S']-EDDS) and Nondegradable (EDTA) Chelate and Hydrogen Modified Soil Water Sorption Capacity on Pb Phytoextraction and Leaching[J]. Plant and Soil, 2003,253:403—411
[22]  Tandy S, Bossart K, Mueller R et al., Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents[J]. Environmental Science & Technology,2004, 38(3):937—944
[23]  Jkr J, Aksela R, Benign and Effective:Kemera Has Conducted Intensive Studies to Find Chelating Agents for Pulp Belaching Application that Are Effective and Environmentde Benign[J].Pulp & Paper International, 2006, 48:28—31

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133