全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

NH3等离子体优化MnOx/MWCNTs催化剂低温选择性催化还原性能

DOI: 10.16085/j.issn.1000-6613.2015.01.025, PP. 143-149

Keywords: 多壁碳纳米管,表面改性,低温选择性催化还原,载体,催化剂活性,吸附

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用介质阻挡放电产生低温NH3等离子体对多壁碳纳米管(MWCNTs)进行表面改性,并在其表面上负载活性组分MnOx,用于低温选择性催化还原脱硝。运用SEM、BET、Raman、FT-IR、XPS和NO-TPD对材料进行表征,结果表明,NH3等离子体能够增加MWCNTs载体的表面缺陷程度,并且在其表面上引入吡啶类和吡咯类含氮基团;与载体未经过NH3等离子体改性的催化剂相比,改性的催化剂活性提高,这与载体MWCNTs表面缺陷增多以及含氮基团的引入,进而提高了催化剂对NO的吸附性能有关。

References

[1]  王海燕,刘志祥,毛宗强,等. SPE电解池催化剂载体的研究[J]. 化工新型材料,2009,37(1):32-33.
[2]  Yang S X,Li X,Zhu W P,et al. Catalytic activity,stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol[J]. Carbon,2008,46:445-452.
[3]  Ducourty B,Szabo G,Dath J P,et al. Pt/Al2O3-Cl catalysts derived from ethylaluminumdichloride:Activity and stability in hydroisomerization of C6 alkanes[J]. Applied Catalysis A:General,2004,269(1):203-214.
[4]  Carmo M,Fritz D L,Mergel J,et al. A comprehensive review on PEM water electrolysis [J]. Int. J. Hydrogen Energy,2013,38(12):4901-4934.
[5]  Qu L T,Liu Y. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. Acsnano,2010,4:1321-1326.
[6]  Bernard P M,Primet M. Influence of hydrogen chloride addition on the catalytic isomerization activity of chlorinated alumina and chlorinated platinum-alumina solids. Superacid behaviour[J]. J. Chem. Soc.,Faraday Trans.,1990,86(3):567-570.
[7]  Park S,Shao Y Y,Liu J,et al. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells:Status and perspective [J]. Energy Environ. Sci.,2012,5(11):9331-9344.
[8]  任学佑. 质子交换膜燃料电池的进展与前景[J]. 电池,2003,33(6):395-397.
[9]  Yang,Z,Xia Y,Mokaya R. Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates[J]. Chem. Mater.,2005,17:4502-4508.
[10]  Sang H,Chu H Y,Lunsford J H. An NMR study of acid sites on chlorided alumina catalysts using trimethylphosphine as a probe[J]. Catalysis Letters,1994,26(3-4):235-246.
[11]  Wang X M,H J M,Zhang J Q. IrO2-SiO2 binary oxide films:Preparation,physiochemical characterization and their electrochemical properties [J]. Electrochim Acta,2010,55(15):4587-4593.
[12]  Kim S Y,Lee J,Na C W,et al. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition[J]. Chem. Phys. Lett.,2005,413:300-305.
[13]  Clet G,Goupil J M,Szabo G,et al. Chlorinated alumina as an alkylation catalyst:Influence of acidity moderators[J]. Applied Catalysis A:General,2000,202(1):37-47.
[14]  Maldonado S,Stevenson K J. Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II)Phthalo cyanine:Electro catalytic aspects for oxygen reduction[J]. Phys. Chem. B,2004,108:11375-11383.
[15]  Ye Z G,Meng H M,Chen D,et al. Structure and characteristics of Ti/IrO2(x) + MnO2(1-x) anode for oxygen evolution [J]. Solid State Sciences,2008,10(3):346-354.
[16]  Sharma S B,Meyers B L,Chen D T,et al. Characterization of catalyst acidity by microcalorimetry and temperature-programmed desorption[J]. Applied Catalysis A:General,1993,102(2):253-265.
[17]  张秋平,濮仲英,于春年,等. RISO型C5/C6烷烃异构化催化剂的工业生产及应用[J]. 石油炼制与化工,2006,36(8):1-4.
[18]  Ayala P,Gruneis A,Gemming T,et al. Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon nitrogen feedstock.[J]. Phys. Chem. C,2007,111:2879-2884.
[19]  Silva D L M,Boodts J F C,De Faria L A. Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution [J]. Electrochim Acta,2001,46(9):1369-1375.
[20]  Khaled P,Yang S B,Yenuy H,et al. Nitrogen-doped graphene and its iron-based composite as efficient electro catalysts for oxygen reduction reaction[J]. ACS Nano,2012,6:9541-9550.
[21]  Santana M H P,De Faria L A. Oxygen and chlorine evolution on RuO2 + TiO2 + CeO2 + Nb2O5 mixed oxide electrodes [J]. Electrochim Acta,2006,51(17):3578-3585.
[22]  Chen Z,Higgins D,Tao H,et al. Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell application[J]. Phys. Chem. C,2009,113:21008-21013.
[23]  王丽珊. MxOy/MWCNTs催化剂的低温SCR性能与反应机理的研究[D]. 广州:华南理工大学能源与环境学院,2012.
[24]  Xu L K,Xin Y L,Wang J T. A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim Acta,2009,54(6):1820-1825.
[25]  Macleod N,Cropley R,Lambert R M. Efficient reduction of NOx by H2 under oxygen-rich conditions over Pd/TiO2 catalysts:An in situ DRIFTS study[J]. Catal. Lett.,2003,86:69-74.
[26]  Cheng J B,Zhang H M,Ma H P,et al. Preparation of Ir0.4Ru0.6MoxOy for oxygen evolution by modified Adams' fusion method [J]. Int. J. Hydrogen Energy,2009,34(16):6609-6613.
[27]  Richter M,Trunschke A,Bentrup U,et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts[J]. J. Catal.,2002,206(1):98-113.
[28]  Xu J Y,Li Q F,Hansen M K,et al. Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysis [J]. Int. J. Hydrogen Energy,2012,37(24):18629-18640.
[29]  Marbán G,Valdés S T,Fuertes A B. Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4[J]. Chem. Phys.,2004,6(2):453-464.
[30]  Cheng J B,Zhang H M,Chen G B,et al. Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis [J]. Electrochim Acta,2009,4(26):6250-6256.
[31]  Kijlstra W S,Brands D S,Smit H I,et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. 2.Reactivity of adsorbed NH3 and NO complexes[J]. Journal of Catalysis,1997,171(1):219-230.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133