全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

封存过程中二氧化碳对煤体理化性质的作用规律

DOI: 10.16085/j.issn.1000-6613.2015.01.046, PP. 258-265

Keywords: 二氧化碳,,存埋,超临界流体,物理化学特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

强化煤层气(CH4)开采的深部煤层封存二氧化碳(CO2)技术能够将主要人为温室气体进行有效存储,但基于煤体特征和适宜储层条件下的CO2流体特性,CO2流体和煤体之间存在除吸附作用以外的其他流-固作用。CO2流体和煤体之间的流-固作用关系既会影响煤层的CO2封存潜力又会引发潜在的环境问题。为此,本文结合国内外的相关研究工作,介绍了煤层封存CO2过程中煤体理化性质变化的研究成果,归纳了煤体理化性质变化对煤层封存CO2潜力的影响,指出了煤体理化性质变化由此造成的环境安全与健康风险问题。分析表明深部煤层封存CO2过程中流-固作用及其影响主要包括两个方面①CO2流体能够诱导煤基质发生溶胀效应,因而会影响注入的CO2流体在煤层内部的扩散和吸附能力;②CO2流体具有萃取煤基质内部有机物的能力,会对环境安全与健康造成威胁。此外,本文还指出了煤基质溶胀机理及其可逆性、煤基质中被萃取出有机物的定性与定量分析是后续煤和CO2流体作用关系的重要研究方向。

References

[1]  Melnichenko Y B,Radlinski A P,Mastalerz M,et al. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)[J]. International Journal of Coal Geology,2009,77(1-2):69-79.
[2]  Mohammad S A,Gasem K A M. Modeling the competitive adsorption of CO2 and water at high pressures on wet coals[J]. Energy & Fuels,2011,26(1):557-568.
[3]  朱灵峰,何卫卫,张杰. 好氧颗粒污泥的研究现状及应用前景[J]. 环境污染与防治,2008,30(5):78-82.
[4]  Jüntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal[J]. Fuel,1984,63(6):731-737.
[5]  Di Iaconi,C,Ramadori R,Lopez A,et al. Hydraulic shear stress calculation in a sequencing batch biofilm reactor with granular biomass[J]. Envioronmental Science & Technology,2005,39(3):889-894. target="_blank">
[6]  陈冉妮,高景峰,郭建秋,等. 好氧颗粒污泥同步脱氮除磷的常温启动和低温维持[J]. 环境科学,2009,30(10):2995-3001.
[7]  梁梦晓,倪晋仁. SBR中好氧颗粒污泥的培养及特性研究[J]. 应用基础与工程科学学报,2009,17(4):502-512.
[8]  黄国富,王成端. 2种反应器中好氧颗粒污泥培养的比较研究[J]. 环境污染与防治,2009,31(4):48-52.
[9]  肖蓬蓬,曹德菊,李浩,等. 同步脱氮除磷好氧颗粒污泥形成与反应机制的研究[J]. 四川农业大学学报,2012,30(3):342-347.
[10]  Mazumder S,van Hemert P,Bruining J,et al. In situ CO2-coal reactions in view of carbon dioxide storage in deep unminable coal seams[J]. Fuel,2006,85(12-13):1904-1912.
[11]  Li Xiaoming,Liu Qianqian,Yang Qi,et al. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation[J]. Bioresource Technology,2009,100(1):64-67.
[12]  Nishino J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal[J]. Fuel,2001,80(5):757-764.
[13]  Liu Yong-qiang,Liu Yu,Tay Joo-Hwa. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology,2004,65(2):143-148.
[14]  Szpyrkowicz L,Naumczyk J,Ziliograndi F. Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes[J]. Water Research,1995,29(2):517-524.
[15]  娄红波,王建中,张萍,等. 电化学法处理苯酚模拟废水的研究[J]. 环境科学与管理,2008,33(2):72-76.
[16]  李明,梁雪梅,潘珍,等. 多孔陶瓷粒子电极电催化氧化降解2-氨基吡啶[J]. 化工进展,2014,33(1):219-223.
[17]  Huang X,Chu W,Sun W J,et al. Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory[J]. Applied Surface Science,2014,299(2):162-169.
[18]  苏秀霞,杨祥龙,诸晓锋,等. 新型材料淀粉微球对Cu2+、Cr3+和Pb2+的吸附机理研究[J]. 环境工程学报,2010,4(3):492-496.
[19]  苏喆,李树林,王琰,等. 粉末活性炭和二氧化氯在长距离原水输送中除嗅研究[J]. 华北水利水电学院学报,2011,32(3):123-125.
[20]  Wang Zhiping,Liu Lili,Yao Jie,et al. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J]. Chemosphere,2006,63(10):1728-1735.
[21]  王洪武,李晓岩,赵庆祥. 胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J]. 中国安全科学学报,2003,13(9):31-34.
[22]  廖青,李小明,杨麒,等. 好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J]. 工业用水与废水,2008,39(4):13-19.
[23]  Cao X Y,Mastalerz M,Chappell M A,et al. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. International Journal of Coal Geology,2011,88(1):67-74.
[24]  Chiang L C,Chang J E,Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Water Research,1995,29(2):671-678.
[25]  Wilen Britt marie,Jin Bo,Lant Paul. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research,2003,37(9):2127-2139.
[26]  Mastalerz M,Drobniak A,Rupp J. Meso- and micropore characteristics of coal lithotypes:Implications for CO2 adsorption[J]. Energy & Fuels,2008,22(6):4049-4061.
[27]  朱自强. 超临界流体技术原理和应用[M]. 北京:化学工业出版社,2000:20.
[28]  Chen Ming Yuan,Lee Duu Jong,Tay Hwa. Staining of extracellular polymeric substances and cells in bioaggregates[J]. Appl. Microbiol. Biotechnol.,2007,75(2):467-474.
[29]  Kolak J J,Burruss R C. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds[J]. Energy & Fuels,2006,20(2):566-574.
[30]  岳立新,孙可明,张风嘉,等. 超临界CO2作用下有效应力对煤体渗透性影响[J]. 辽宁工程技术大学学报,2013,32(9):1157-1160.
[31]  马尚权,付京. 电磁辐射作用下煤中自由基影响瓦斯突出的研究[J]. 华北科技学院学报,2004,11(1):1-4,13.
[32]  高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京:化学工业出版社,2010:18-21.
[33]  Qin Lei,Tay Joo Hwa,Liu Yu. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry,2004,39(5):579-584.
[34]  Laspidou Chrysi S,Rittmann Bruce E. A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass[J]. Water Research,2002,36(11)2711-2720.
[35]  张丽丽,陈效,陈建孟,等. 胞外多聚物在好氧颗粒污泥行程中的作用机制[J]. 环境科学,2007,28(4):795-799.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133