全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

蔗糖在DMF-[BMIm]Cl溶剂中催化制备5-HMF

DOI: 10.16085/j.issn.1000-6613.2015.01.023, PP. 133-137

Keywords: 5-羟甲基糠醛,生物质,N,N-二甲基甲酰胺,[BMIm]Cl,水解,催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了在N,N-二甲基甲酰胺(DMF)-离子液体[BMIm]Cl混合溶剂中将蔗糖高效转化为5-羟甲基糠醛(5-HMF)的反应。运用紫外-可见分光光度计对水解液中5-HMF进行定量分析并计算其收率。考察了CrCl3·6H2O、AlCl3·6H2O、SnCl4·5H2O、FeCl3、CoCl2·6H2O、ZnCl2、CuCl2·2H2O、CaCl28种催化剂对反应的催化效果,结果表明AlCl3·6H2O催化效果最为明显。以AlCl3·6H2O为催化剂研究了不同反应条件如时间、温度、溶剂中DMF-[BMIm]Cl质量比、催化剂AlCl3·6H2O的用量对5-HMF收率的影响,得到的最佳条件为以0.5mmol蔗糖为反应物,0.4mmolAlCl3·6H2O为催化剂,反应时间2h,反应温度120℃,5g质量比为8515的DMF-[BMIm]Cl混合溶剂,此条件下5-HMF收率最高可达63.4%。研究表明,DMF-[BMIm]Cl混合溶剂体系对蔗糖转化为5-HMF有一定的促进效果,在此溶剂体系中以AlCl3·6H2O为催化剂时可以得到较高的5-HMF产率。

References

[1]  Wang S,Mao D,Guo X,et al. Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts[J]. Catalysis Communications,2009,10(10):1367-1370.
[2]  王淑勤,张佩佩. 纳米TiO2治理室内甲醛的实验研究[J]. 环保科技,2008,14(2):1-7.
[3]  王幸宜,卢冠忠. 铜,锰氧化物的表面过剩氧及其甲苯催化燃烧活性[J]. 催化学报,1994,15(2):103-108.
[4]  Berndes G,Hoogwijk M,van den Broek R. The contribution of biomass in the future global energy supply:A review of 17 studies[J]. Biomass and Bioenergy,2003,25(1):1-28.
[5]  Zhang Q,Zuo Y-Z,Han M-H,et al. Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether[J]. Catalysis Today,2010,150(1-2):55-60.
[6]  Gallardo Amords J M,Armaroli T,Ramis G. A study of anatase-supported Mn oxide as catalysts for 2-propanol oxidation[J]. Applied Catalysis B:Environmental,1999,22(4):249-259.
[7]  Rofiqul Islam M,Rabiul Islam M,Rafiqul Alam Beg M. Renewable energy resources and technologies practice in Bangladesh[J] . Renewable and Sustainable Energy Reviews,2008, 12(2) : 299-343.
[8]  Krogman J P,Foxman B M,Thomas C M. Activation of CO2 by a Heterobimetallic Zr/Co Complex[J]. Journal of the American Chemical Society,2011,133(37):14582-14585.
[9]  Kundakovic L,Flytzani-Stephanopoulos M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A:General,1998,171:13-29.
[10]  Xiao S,Liu B,Wang Y,et al. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures[J]. Bioresource Technology,2014,151:361-366.
[11]  Yin S,Swift T,Ge Q. Adsorption and activation of CO2 over the Cu-Co catalyst supported on partially hydroxylated γ-Al2O3[J]. Catalysis Today,2011,165(1):10-18.
[12]  Binder J B,Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979-1985.
[13]  王军,张春鹏,欧阳平凯. 5-羟甲基糠醛制备及应用的研究进展[J]. 化工进展,2008,27(5):702-707. 浏览
[14]  Drees M,Cokoja M,Kühn F E. Recycling CO2 Computational considerations of the activation of CO2 with homogeneous transition metal catalysts[J]. Chem. Cat.:Chem.,2012,4(11):1703-1712.
[15]  Ogasawara Y, Itagaki S,Yamaguchi K,et al. Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution[J]. Chem. Sus. Chem.,2011,4(4):519-525.
[16]  Ashley A,O'Hare D. FLP-mediated activations and reductions of CO2 and CO[J]. Top Curr. Chem.,2013,344:191-217.
[17]  Moreau C,Durand R,Aliès F,et al. Hydrolysis of sucrose in the presence of H-form zeolites[J]. Industrial Crops and Products,2000,11(2):237-242.
[18]  Liu R W,Qin Z Z,Ji H B,et al. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Industrial and Engineering Chemistry Research,2013,52(47):16648-16655.
[19]  Zhao H,Holladay J E,Brown H,et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfur-fural[J]. Science, 2007,316(5831):1597-1600.
[20]  Chae S R,Hwang E J,Shin H S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J]. Bioresource Technology,2006,97(2):322-329.
[21]  Hu S,Zhang Z,Song J,et al. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid[J]. Green Chemistry,2009,11(11):1746-1749.
[22]  Hiroshi H,Satoshi Y,Masahiro D,et al. Selectivity control of CO2 reduction in an inorganic artificial photosynthesis system[J]. Applied Physics Express,2013,6(9):097102.
[23]  Román-Leshkov Y,Moliner M,Labinger J A,et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. An-gewandte Chemie International Edition,2010,49(47):8954- 8957.
[24]  Glueck S M,Gumus S,Fabian W M F,et al. Biocatalytic carboxylation[J]. Chemical Society Reviews,2010,39(1):313-328.
[25]  Pagán-Torres Y J,Wang T,Gallo J M R,et al. Production of 5-hydroxymethylfurfural from glucose using a combination of Lewis and Br?nsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent[J]. ACS Catalysis,2012,2(6):930-934.
[26]  Kumar A,Ergas S,Yuan X,et al. Enhanced CO2 fixation and biofuel production via microalgae:Recent developments and future directions[J]. Trends in Biotechnology,2010,28(7):371-380.
[27]  Lai L,Zhang Y. The effect of imidazolium ionic liquid on the dehydration of fructose to 5-hydroxymethylfurfural,and a room tempera-ture catalytic system[J]. Chem. Sus. Chem.,2010,3(11):1257-1259.
[28]  邓友全. 离子液体——性质,制备与应用[M]. 北京:中国石化出版社,2006.
[29]  Li S,Ma S. CO2-activation for γ-butyrolactones and its application in the total synthesis of (±)-heteroplexisolide E[J]. Chemistry:An Asian Journal,2012,7(10):2411-2418.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133