全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

银基半导体光催化剂研究进展

DOI: 10.16085/j.issn.1000-6613.2015.01.020, PP. 113-118

Keywords: 光化学,银基光催化剂,可见光,光催化性能,稳定性,废水,降解

Full-Text   Cite this paper   Add to My Lib

Abstract:

银基半导体光催化剂作为近年来新的研究热点,在可见光下通常表现出较好的光催化活性,但光催化性能不稳定,反应过程中极易发生光腐蚀,导致光催化活性下降。此外,银基半导体通常比表面积小,无孔结构。本文综述了近年来银基半导体光催化剂的研究进展,介绍了如简单银化合物、异质结型复合体、银基固溶体及负载型银基半导体光催化剂的制备和应用。认为形成异质结、增大比表面积、丰富孔结构或通过形貌和晶面控制是解决上述银基半导体不足的有效方法,并结合银基半导体光催化剂的优点必将在光催化降解废水和制氢等领域有良好的发展。

References

[1]  Liu L,Sun J,Li M,et al. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment[J]. Bioresource Technology,2009,100(23):5853-5858.
[2]  Tong H,Ouyang S X,Bi Y P,et al. Nano-photocatalytic materials possibilities and challenge[J]. Advanced Material,2012,24(2):229-251.
[3]  Liu C,Wyman C E. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180℃[J]. Carbohydrate Research,2006,341(15):2550-2556.
[4]  Yu C L,Yang K,Xie Y,et al. Novel hollow Pt-ZnO nano-composite microspheres with hierarchical structure and enhanced photocatalytic activity and stability[J]. Nanoscale,2013,5:2142-2151.
[5]  余长林,杨凯. 异质结构的复合光催化材料的研究新进展[J]. 有色金属科学与工程,2010,1(2):16-21.
[6]  Yu H G,Irie H,Hashimoto K. Conduction band energy level control of titanium dioxide toward an efficient visible-light-sensitive photocatalyst[J]. Journal of the American Chemical Society,2010,132:6898-6899.
[7]  Wang G M,Yang X Y,Qian F,et al. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation[J]. Nano Letters,2010,10:1088-1092.
[8]  王欢,崔文权,韩炳旭,等. Ag/AgX(X=Cl,Br,I)等离子共振光催化剂的研究进展[J]. 化工进展,2013,32(2):346-351.
[9]  胡青松,陈明强,王君,等. 金属盐催化木糖脱水制备糠醛的研究进展[J]. 生物质化学工程,2013,47(6):33-40.
[10]  Yu C L,Wei L F,Li X,et al. Synthesis and characterization of Ag/TiO2-B nanosquares with high photocatalytic activity under visible light irradiation[J]. Materials Science and Engineering:B,2013,178:344-348.
[11]  王跃. 银基微纳米半导体光催化应用研究进展[J]. 化学研究,2013,24(1):92-103.
[12]  尹莉,陈德良,李涛,等. 贵金属/WO3 复合纳米晶的气敏与光催化研究进展[J]. 化工进展,2012,31(1):133-143.
[13]  Tania Ahmad L K,Kjell Olsson,Olof Theander. The formation of 2-furaldehyde and formic acid from pentoses in slightly acidic deuterium oxide studied by 1H HMR spectroscopy[J]. Carbohydrate Research,1995,276:309-320.
[14]  Kuai L,Geng B,Chen X,et al. Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag/AgBr plasmonic photocatalyst[J]. Langmuir,2010,26(24):18723-18727.
[15]  Mark R Nimlos,Qian Xianghong,Mark Davis,et al. Energetics of xylose decomposition as determined using quantum mechanics modeling[J]. The Journal of Chemical Physics,2006,110:11824-11838.
[16]  Kato H,Kobayashi H,Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure[J]. Journal of Physical Chemistry B,2002,106:12441-12447.
[17]  Antal Jr M J,Leesomboon T,Mok W S,et al. Mechanism of formation of 2-furaldehyde from d-xylose[J]. Carbohydrate Research,1991,217:71-85.
[18]  Wang X F,Li S F,Yu H G,et al. Ag2O as a new visible-light photocatalyst:Self-stability and high photocatalytic activity[J]. Chemistry:A European Journal,2011,17:7777-7780.
[19]  Wang P,Huang B B,Qin X Y,et al. Ag/AgCl:A highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemic:International Edition,2008,47(41):7931-7933.
[20]  Wang P,Huang B B,Zhang X Y,et al. Highly efficient visible-light plasmonic photocatalyst Ag/AgBr[J]. Chemistry:A European Journal,2009,15(8):1821-1824.
[21]  Wang P,Huang B B,Zhang Q,et al. Highly efficient visible light plasmonic photocatalyst Ag/Ag(Br,I)[J]. Chemistry:A European Journal,2010,16(33):10042-10047.
[22]  Wang D,Duan Y,Luo Q,et al. Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method[J]. Desalination,2011,270:174-180.
[23]  Choi M,Shin K H,Jang J. Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light[J]. Journal of Colloid and interface Science,2010,341(1):83-87.
[24]  Bi Y P,Ye J H. In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties[J]. Chemical Communications,2009,43:6551-6553.
[25]  Bi Y P,Ye J H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction[J]. Chemical Communications,2010,46(9):1532-1534.
[26]  Li Y Y,Ding Y. Porous AgCl/Ag nanocomposites with enhanced visible light photocatalytic properties[J]. Journal of Physical Chemistry C,2010,114(7):3175-3179.
[27]  Yu J Q,Dai G P,Huang B B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays[J]. Journal of Physical Chemistry C,2009,113(37):16394-16401.
[28]  Zhou X E,Hu C,Hu X X,et al. Plasmon·assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation[J]. Journal of Physical Chemistry C,2010,114(6):2746-2750.
[29]  Hu C,Peng T W,Hu X X,et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation[J]. Journal of the American Chemical Society,2010,132(2):857-862.
[30]  Sun Y G. Conversion of Ag nanowires to AgCl nanowires decorated with Au nanoparticles and their photocatalytic activity[J]. Journal of Physical Chemistry C,2010,114(5):2127-2133.
[31]  Wang E,Huang B,Lou Z,et al. Synthesis of highly efficient Ag/AgCl plasmonic photocatalysts with various structures[J]. Chemistry:A European Journal,2010,16(2):538-544.
[32]  Ouyang S X,Zang H T,Li D F,et al. Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2[J]. Journal of Physical Chemistry B,2006,110:11677-11682.
[33]  Ouyang S X,Kikugawa N,Chen D,et al. A systematical study on photocatalytic properties of AgMO2(M-AI,Ga,In):Effects of chemical compositions,crystal structures,and electronic structures[J]. Journal of Physical Chemistry C,2009,113:1560-1566.
[34]  Kako T,Ye J H. Synergistic effect of different phase on the photocatalytic activity of visible light sensitive silver antimonates[J]. Journal of Molecular Catalysis A,2010,320:79-84.
[35]  Kato H,Kobayashi H,Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3(M:Ta and Nb)with the perovskite structure[J]. Journal of Physical Chemistry B,2002,106:12441-12447.
[36]  Ouyang S X,Kikugawa N,Zou Z G,et al. Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation[J]. Applied Catalysis A,2009,366:309-314.
[37]  Ouyang S X,Li Z S,Ouyang Z,et al. Correlation of crystal structures,electronic structures,and photocatalytic properties in a series of Ag-based oxides:AgAlO2,AgCrO2,and AgCrO4[J]. Journal of Physical Chemistry C,2008,112:3134-3141.
[38]  Yi Z G,Ye J H,Kikugawan N,et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Material,2010,9:559-564.
[39]  Bi Y P,Ouyang S X,Umezawan N,et al. Facet effect of single crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society,2011,133:6490-6492.
[40]  Bi Y P,Ouyang S X,Cao J,et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4(X = Cl,Br,I) heterocrystals with enhanced photocatalytic properties and stabilities[J]. Physical Chemistry Chemical Physics,2011,13(21):10071-10075.
[41]  Yu C L,Zhou W Q,Yu J C,et al. Design and fabrication of hetero junction photocatalysts for energy conversion and pollutant degradation[J]. Chinese Journal of Catalysis,2014,35(10):1609-1618.
[42]  Yu C L,Li G,Kumar S,et al. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J]. Advanced Materials,2014,26:892-898.
[43]  Yao W,Zhang B,Huang C,et al. Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions[J]. Journal of Materials Chemistry,2012,22(9):4050-4055.
[44]  Yu C L,Wei L F,Chen J C,et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3[J]. Industrial and Engineering Chemistry Research,2014,53:5759-5766.
[45]  Hu C,Lan Y,Qu J,et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria[J]. Journal of Physical Chemistry B,2006,110:4066-4072.
[46]  Wang P,Huang B,Qin X,et al. Ag/AgBr/WO3·3H2O:Visible-light photocatalyst for bacteria destruction[J]. Inorganic Chemistry,2009,48:10697-10702.
[47]  Ouyang S X,Ye J H. β-AgAl1-xGaxO2 solid-solution photocatalysts continuous modulation of electronic structure toward high-performance visible-light photoactivity[J]. Journal of the American Chemical Society,2011,133:7757-7763.
[48]  Tsuji I,Kato H,Kobayashi H. Photocatalytic H2 evolution reaction from aqueous solutions over hand structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures[J]. Journal of the American Chemical Society,2004,126:13406-13413.
[49]  Wang D,Kako T,Ye J. New series of solid-solution semiconductors (AgNbO3)1-x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C,2009,113(9):3785-3792.
[50]  Li G Q,Wang D F,Zou Z G,et al. Enhancement of visible-light photocatalytic activity of Ag0.7Na0.3NbO3 modified by a platinum complex[J]. Journal of Physical Chemistry C,2008,112:20329-20333.
[51]  An C,Peng S,Sun Y. Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst[J]. Advanced Materials,2010,22(23):2570-2574.
[52]  Elahifard M R,Rahimnejad S,Haghighi S,et al. Apatite-coated Ag/AgBr/TiO2[J]. Journal of the American Chemical Society,2007,129(31):9552-9553.
[53]  Zhu M,Chen P,Liu M. Ag/AgBr/graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions:A comparison of sunlight energized plasmonicp hotocatalytic activity[J]. Langmuir,2012,28(7):3385-3390.
[54]  Xu Y,Zhang W. Monodispersed Ag3PO4 nanocrystals loaded on the surface of spherical Bi2MoO6 with enhanced photocatalytic performance[J]. Dalton Transactions,2012,42(4):1094-1101.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133