全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

三维分级结构二氧化钛纳米材料的可控合成与应用研究进展

DOI: 10.16085/j.issn.1000-6613.2015.12.022, PP. 4272-4279

Keywords: 二氧化钛,纳米材料,三维分级结构,电化学,催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

由低维度纳米尺寸单元构建组成的三维分级结构纳米材料具有优异的物理和化学特性。三维分级结构对TiO2纳米材料的光、电、化学等性质有着显著的优化作用,TiO2作为一种重要的宽禁带半导体材料在光催化、电化学等领域得到了广泛的研究。本文综述了各种不同维度基本组成单元构建而成的三维分级TiO2纳米材料的合成方法,不同的合成方法得到了由纳米线、纳米片、纳米棒以及二维结构组装而成的各种不同形貌的三维分级结构TiO2纳米材料。同时还介绍了三维分级结构TiO2纳米材料在染料敏化太阳能电池、锂离子电池和光催化等应用领域中的最新研究进展,并对其可控合成进行了展望。

References

[1]  Koziej D,Lauria A,Niederberger M. 25th Anniversary article:Metal oxide particles in materials science:Addressing all length scales[J]. Adv. Mater.,2014,26(2):235-257.
[2]  Zhang H Z,Banfield J F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2[J]. Chem. Rev.,2014,114(19):9613-9644.
[3]  Villanueva-Cab J,Jang S R,Halverson A F,et al. Trap-free transport in ordered and disordered TiO2 nanostructures[J]. Nano Lett.,2014,14(5):2305-2309.
[4]  Zhou M J,Liu Y C,Chen J,et al. Double-shelled hollow SnO2/Polymer microsphere as a high-capacity anode material for superior reversible lithium ion storage[J]. J. Mater. Chem. A,2015,3(3):1068-1076.
[5]  Djurisic A B,Leung Y H,Ng A M C. Strategies for improving the efficiency of semiconductor metal oxide photocatalysis[J]. Mater. Horiz.,2014,1(4):400-410.
[6]  Chen X B,Liu L,Yu P Y,et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science,2011,331(6018):746-750.
[7]  Lee J S,You K H,Park C B. Highly photoactive,low bandgap TiO2 nanoparticles wrapped by graphene[J]. Adv. Mater.,2012,24(8):1084-1088.
[8]  Hao Q,Chen L,Xu C X. Facile fabrication of a three-dimensional cross-linking TiO2 nanowire network and its long-term cycling life for lithium storage[J]. ACS Appl. Mater. Interfaces,2014,6(13):10107-10112.
[9]  Sarkar D,Chattopadhyay K K. Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three step electron transfer for enhanced photocatalytic property[J]. ACS Appl. Mater. Interfaces,2014,6(13):10044-10059.
[10]  Kim H S,Lee J W,Yantara N,et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett.,2013,13(6):2412-2417.
[11]  Jung Mi H,Ko K C,Lee J Y. Single crystalline-like TiO2 nanotube fabrication with dominant (001) facets using poly(vinylpyrrolidone) for high efficiency solar cells[J]. J. Phys. Chem. C,2014,118(31):17306-17317.
[12]  Cai J H,Huang Z A,Lü K L,et al. Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity[J]. RSC Adv.,2014,4(38):19588-19593.
[13]  Tian G H,Chen Y J,Zhou W,et al. 3D hierarchical flower-like TiO2 nanostructure:Morphology control and its photocatalytic property[J]. CrystEngComm,2011,13(8):2994-3000.
[14]  Shen L F,Zhang X G,Li H G,et al. Design and tailoring of a three-dimensional TiO2-graphene-carbon nanotube nanocomposite for fast lithium storage[J]. J. Phys. Chem. Lett.,2011,2(24):3096-3101.
[15]  Ye M D,Liu H Y,Lin C J,et al. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates[J]. Small,2013,9(2):312-321.
[16]  Xin L,Liu Y,Li B J,et al. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries[J]. Scientific Reports,2014,4:4479.
[17]  刘凤艳,肖丽伟,康志成,等. 多孔二氧化钛吸附刚果红[J].化工进展,2014,33(5):1321-1326.
[18]  Sridharan K,Park T J. Thorn-ball shaped TiO2 nanostructures:Influence of Sn2+ doping on the morphology and enhanced visible light photocatalytic activity[J]. Applied Catalysis B:Environmental,2013,134-135:174-184.
[19]  Park K S,Min K M,Jin Y H,et al. Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon[J]. J. Mater. Chem.,2012,22(31):15981-15986.
[20]  Zhou Y,Wu H Y,Zhong X,et al. Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route[J]. J. Nanopart. Res.,2014,16:2466.
[21]  Park S G,Jeon T Y,Yang S M. Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol-gel reaction[J]. Langmuir,2013,29(31):9620-9625.
[22]  彭卿,李亚栋. 功能纳米材料的化学控制合成、组装、结构与性能[J]. 中国科学(B辑):化学,2009,39(10):1028-1052.
[23]  Yang Y,Wang G Z,Deng Q,et al. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(Ⅵ) and methyl orange[J]. ACS Appl. Mater. Interfaces,2014,6(4):3008-3015.
[24]  Wang L,Nie Z Y,Cao C B,et al. Controllable synthesis of porous TiO2 with hierachical nanostructure for efficient photocatalytic hydrogen evolution[J]. J. Mater. Chem A,2015,3(7):3710-3718.
[25]  Sun Z Q,Kim J H,Zhao Y,et al. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures[J]. J. Am. Chem. Soc.,2011,133(48):19314-19317.
[26]  Shih P C,Peng J D,Lee C P,et al. Multifunctional TiO2 microflowers with nanopetals as scattering layer for enhanced quasi-solid-state dye-sensitized solar cell performance[J].ChemElectroChem,2014,1(3):532-535.
[27]  Chen F J,Zhou G W,Chen H J,et al. Easy synthesis of layered titanate nanosheets with 3D hierarchical flower-like structures[J]. RSC Adv.,2014,4(78):41678-41682.
[28]  Yu L B,Li Z,Liu Y B,et al. Synthesis of hierarchical TiO2 flower-rod and application in CdSe/CdS co-sensitized solar cell[J]. Journal of Power Sources,2014,270:42-52.
[29]  Wu W Q,Lei B X,Rao H S,et al. Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized dolar cells[J]. Scientific Reports,2013,3:1352.
[30]  Wu W Q,Xu Y F,Rao H S,et al. Trilayered photoanode of TiO2 nanoparticles on a 1D-3D nanostructured TiO2 grown flexible Ti substrate for high-efficiency(9.1%) dye-sensitized solar cells with unprecedentedly high photocurrent density[J]. J. Phys. Chem. C,2014,118(30):16426-16432.
[31]  Xin X,Zhou X F,Wu J H,et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano,2012,6(12):11035-11043.
[32]  Cheng G,Wang Z G,Liu Y L,et al. Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules[J]. ACS Appl. Mater. Interfaces,2013,5(8):3182-3190.
[33]  Bian J C,Huang C,Wang L Y,et al. Carbon dot loading and TiO2 nanorod length dependence of photoelectrochemical properties in carbon dot/TiO2 nanorod array nanocomposites[J]. ACS Appl. Mater. Interfaces,2014,6(7):4883-4890.
[34]  Sheng X,He D Q,Yang J,et al. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties[J]. Nano Lett.,2014,14(4):1848-1852.
[35]  Zha C Y,Shen L M,Zhang X Y,et al. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces,2014,6(1):122-129.
[36]  Han H,Sudhagar P,Song T,et al. Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells[J]. Chem. Commun.,2013,49(27):2810-2812.
[37]  Mali S S,Kim H,Shim C S,et al. Single-step synthesis of 3D nanostructured TiO2 as a scattering layer for vertically aligned 1D nanorod photoanodes and their dye-sensitized solar cell properties[J]. Cryst. Eng. Comm.,2013,15(28):5660-5667.
[38]  Panda S K,Yoon Y,Jung H S,et al. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery[J]. Journal of Power Sources,2012,204:162-167.
[39]  Fu X X,Wang B B,Ren Z M,et al. Controllable synthesis of TiO2 hierarchical nanostructures and their applications in lithium ion batteries[J]. RSC Adv.,2014,4(81):42772-42778.
[40]  Lan T B,Liu Y B,Dou J,et al. Hierarchically porous TiO2 microspheres as a high performance anode for lithium-ion batteries[J]. J. Mater. Chem. A,2014,2(4):1102-1106.
[41]  Wang H Q,Sun L,Wang H,et al. Rutile TiO2 mesocrystallines with aggregated nanorod clusters:Extremely rapid self-reaction of the single source and enhanced dye-sensitized solar cell performance[J]. RSC Adv.,2014,4(102):58615-58623.
[42]  Liu Y B,Lan T B,Zhang W F,et al. Hierarchically porous anatase TiO2 microspheres composed of tiny octahedra with enhanced electrochemical properties in lithium-ion batteries[J]. J. Mater. Chem. A,2014,2(47):20133-20138.
[43]  Bai H W,Liu Z Y,Liu L,et al. Large-scale production of hierarchical TiO2 nanorod spheres for photocatalytic elimination of contaminants and killing bacteria[J]. Chem. Eur. J.,2013,19(9):3061-3070.
[44]  Li G L,Chen Q W,Lan J. Facile synthesis,metastable phase induced morphological evolution and crystal ripening,and structure- dependent photocatalytic properties of 3D hierarchical anatase superstructures[J]. ACS Appl. Mater. Interfaces,2014,6(24):22561-22568.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133