全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

乙烯分离与复叠制冷系统用能的综合优化

DOI: 10.16085/j.issn.1000-6613.2015.12.010, PP. 4191-4197

Keywords: 系统工程,(火用),优化设计,夹点技术,乙烯,复叠制冷

Full-Text   Cite this paper   Add to My Lib

Abstract:

乙烯装置的分离过程要在低温下进行,由乙烯制冷系统提供所需冷量。乙烯制冷系统为封闭式循环,独立于分离单元之外。将乙烯分离单元与制冷系统同时优化,能有效提高装置用能效率。复叠式制冷级数是当前乙烯工业中使用最为广泛的制冷技术。本文针对乙烯分离过程和配套的复叠制冷系统,采用AspenHysys进行模拟并进行(火用)分析,发现系统主要的(火用)损失发生在换热与压缩两部分,其占总(火用)损失的83%,为节能的重点。进而通过夹点技术对冷剂配置进行分析,发现-56℃以上各温位的冷量配置不合理,远超过理论最小值,-56℃以下各温位的冷量基本达到理论最小值。提出了采用多股流换热器的换热网络理论设计方法,并对冷剂进行重新配置,该理论方案可以降低丙烯制冷压缩机约30%的功耗,并节约部分乙烯制冷压缩机功耗,显著降低了乙烯深冷分离能耗。

References

[1]  冯霄. 化工节能原理与技术[M]. 北京:化学工业出版社,2009.
[2]  Richard H M,Mark Whitney. Process based mixed refrigrants for ethylene plant:US,005768913A[P].1998.
[3]  Vitus Tuan Wei,Qi Ma,James Tzong-chaur Wu. Olefin plant refrigrantion systerm:US,6750113B2[P]. 2004-05-16.
[4]  Linnhoff B,Dhole V R. Shaftwork targets for low-temperature process design[J]. Chemical Engineering Science,1992,47(8):2081-2091.
[5]  Timmerhaus K D. Simulation of cryogenic refrigerant process:US,005768913A[P]. 1998-06-23.
[6]  Kanoglu M. Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction[J]. International Journal of Energy Research,2002,26(8):763-774.
[7]  Mehrpooya M,Jarrahian A,Pishvaie M R. Simulation and exergy-method analysis of an industrial refrigeration cycle used in NGL recovery units[J]. International Journal of Energy Research,2006,30(15):1336-1351.
[8]  Remeljej C W,Hoadley A F A. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes[J]. Energy,2006,31:2005-2019.
[9]  赵路,杨敬一,徐心茹,等. LNG混合制冷系统有效能分析[J]. 计算机与应用化学,2010(9):1277-1282.
[10]  Mahabadipour H,Ghaebi H. Development and comparison of two expander cycles used in refrigeration system of olefin plant based on exergy analysis[J]. Applied Thermal Engineering,2013,50(1):771-780.
[11]  Mafi M N,Mousavi S M,Amidpour M. Exergy analysis of multistage cascade low temperature refrigeration systems used in olefin plants[J]. International Journal of Refrigeration,2009,32(2):279-294.
[12]  Chang H. Exergy analysis and exergoeconomic analysis of an ethylene process[J]. Tamkang Journal of Science and Engineering,2001,4(2):95-104.
[13]  Dinh H,Zhang J,Xu Q. 2012 AIChE Annual Meeting[C]. United States:American Institute of Chemical Engineers,2012.
[14]  Krishnadevarajan K,Zhang J,Xu Q. 2011 AIChE Annual[C]. United States:American Institute of Chemical Engineers,2011.
[15]  Zhang J,Wen Y,Xu Q. 2010 AIChE Annual Meeting[C]. United States:American Institute of Chemical Engineers,2010.
[16]  Zhang J,Xu Q. Cascade refrigeration system synthesis based on exergy analysis[J]. Computers and Chemical Engineering:2011,35(9):1901-1914.
[17]  Mafi M,Amidpour M,Naeynian S M M. Comparison of low temperature mixed refrigerant cycles for separation systems[J]. International Journal of Energy Research,2009,33(4):358-377.
[18]  Fabrega F M,Rossi J S,d'Angelo J V H. Exergetic analysis of the refrigeration system in ethylene and propylene production process[J]. Energy,2010,35(3):1224-1231.
[19]  Abdollahi-Demneh F,Moosavian M A,Omidkhah M R,et al. Calculating exergy in flowsheeting simulators:A HYSYS implementation[J]. Energy,2011,36(8):5320-5327.
[20]  Marmolejo-Correa D,Gundersen T. A comparison of exergy efficiency definitions with focus on low temperature processes[J]. Energy,2012,44(1):4774-4789.
[21]  Tirandazi B,Mehrpooya M,Vatani A,et al. Exergy analysis of C2+ recovery plants refrigeration cycles[J]. Chemical Engineering Research and Design,2011,89(6):676-689.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133