全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

纳米制冷剂对换热和压缩机性能影响研究进展

DOI: 10.16085/j.issn.1000-6613.2015.12.003, PP. 4145-4150

Keywords: 纳米制冷剂,热导率,沸腾换热,压缩机

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米技术在制冷设备中的应用是目前制冷领域的创新性研究之一。本文综述了纳米技术在制冷领域的最新研究成果,在节能环保的背景下总结了纳米材料应用于制冷系统中的优势,简单介绍了近几年常用的制备方法,列举了不同的纳米制冷剂对换热效果的影响,阐述了纳米颗粒在减小压缩机摩擦、提高压缩机性能方面的作用。提出如何制备具有长期稳定性的纳米制冷剂、建立纳米制冷剂流动沸腾换热和压降特性模型、确保纳米粒子可以在制冷系统各部件中运行稳定无沉淀是未来纳米技术在制冷领域研究的关键问题。

References

[1]  Henderson K,Park Y G,Liu L,et al. Flow boiling heat transfer of R134a-based nanofluids in a horizontal tube[J]. Int. J. Heat Mass. Transfer,2010,53:944-951.
[2]  Peng Hao,Ding Guoliang,Hu Haitao,et al. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles[J]. International Journal of Refrigeration,2010,33(2):347-358.
[3]  Kedzierski M A. Effect of diamond nanolubricate on R134a pool boiling heat transfer[C]//Nanoscale Heat and Mass Transfer International Conference,Shanghai,China. 2009:389-398.
[4]  Park K J,Jung D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air conditioning[J]. Energy and Buildings,2007,39:1061-1064.
[5]  Park K J,Jung D. Enhancement of nucleate boiling heat transfer using carbon nanotubes[J]. Int. J. Heat Mass. Transfer,2007,50:4499-4502.
[6]  Trisaksri V,Wongwises S. Nucleate pool boiling heat transfer of TiO2/R141b nanofluids[J]. Int. J. Heat Mass. Transfer,2009,52:1582-1588.
[7]  Yang C Y,Liu D W. Effect of nano-particles for pool boiling heat transfer of refrigerant 141B on horizontal tubes[J]. Int. J. Microscale Nanoscale Thermal Fluid Transport Phenomena,2010,1(3):233-243.
[8]  Peng H,Ding D,Jiang W,et al. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube[J]. Int. J. Refrigeration,2009,32:1259-1270.
[9]  Sun Bin,Di Yang. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube[J]. International Journal of Refrigeration,2014,38:206-214.
[10]  Park Y,Sommers A,Liu L,et al. Nanoparticles to enhance evaporative heat transfer[C]//The 22nd Int. Congress of Refrigeration,Beijing,China,2007. Paper number:ICR07-B1-709.
[11]  Mahbubul I M,Saidura R,Amalina M A. Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube[J]. Procedia Engineering,2013,56:323-329.
[12]  Tang Xiao,Zhao Yaohua,Diao Yanhua. Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate[J]. Experimental Thermal and Fluid Science,2014,52:88-96.
[13]  Lee J,Cho S,Hwang Y,et al. Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces[J]. Tribol. Int.,2009,42(3):440-447.
[14]  Lee K,Wang Y H,Cheong S,et al. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil[J]. Curr. Appl. Phys.,2009,9(2):128-131.
[15]  Fu Liehu,Wang Ruixiang,Cong Wei,et al. Experiment study on performance of refrigerator using nano-particle additive[J]. Journal of Xi'an Jiaotong University,2008,42:852-854.
[16]  Bi Shengshan,Shi Lin,Zhang Lili. Application of nanoparticles in domestic refrigerators[J]. Applied Thermal Engineering,2008,28(14-15):1834-1843.
[17]  张朝晖,陈敬良,刘晓红,等.中国制冷空调工业协会再谈中国制冷空调行业的转型升级发展[J].制冷与空调,2014,14(1):1-5.
[18]  Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles,developments and applications of non newton flows[J]. Applied A:Materials Science&Processing,1995,66:99-105. :Materials Science target="_blank">
[19]  Pankaj Sharma,Il-Hyun Baek,Taehyun Cho,et al. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids[J]. Powder Technology,2011,208(1):7-19.
[20]  Yu Wei,Xie Huaqing,Chen Lifei,et al. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid[J]. Thermochimica Acta,2009,491(1-2):92-96.
[21]  Yu Wei,Xie Huaqing,Li Yang,et al. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid[J]. Particuology,2011,9:187-191.
[22]  Meng Zhaoguo,Wu Daxiong,Wang Liangang,et al. Carbon nanotube glycol nanofluids:Photo-thermal properties,thermal conductivities and rheological behavior[J]. Particuology,2012,10:614-618.
[23]  Ali Celen,Alican ?ebi,Melih Aktas,et al. A review of nanorefrigerants:Flow characteristics and applications[J]. International Journal of Refrigeration,2014,44:125-140.
[24]  Saidur R,Kazi S N,Hossain M S,et al. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems[J]. Renewable and Sustainable Energy Reviews,2011,15(1):310-323.
[25]  Venkataramana Murthy,Padmanabhan V,Senthilkumar Palanisamy. The use of TiO2 nanoparticles to reduce refrigerator irreversibility[J]. Energy Conversion and Management,2012,59:122-132.
[26]  Zoubida Haddad,Cherifa Abid,Hankan F Oztop,et al. A review on how the researchers prepare their nanofluids[J]. International Journal of Thermo Science,2014,76(1):168-189.
[27]  Choi C,Yoo H S,Oh J M. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants[J]. Current Applied Physics,2008,8(6):710-712.
[28]  Wang Ruixiang,Wu Qingping,Wu Yezheng. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants[J]. Energy and Buildings,2010,42(11):2111-2117.
[29]  Xing Meibo,Wang Ruixiang,Yu Jianlin. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors[J]. International Journal of Refrigeration,2014,40:398-403.
[30]  娄江峰,张华,王瑞祥,等.颗粒形态和浓度对纳米石墨冷冻机油密度和黏度的影响[J].化工学报,2014,65(10):3846-3851. 浏览
[31]  Henderson Kristen,Young-Gil Park,Liu Liping,et al. Flow-boiling heat transfer of R134a-based nanofluids in a horizontal tube[J]. International Journal of Heat and Mass Transfer,2010,53(5-6):944-951.
[32]  娄江峰,张华,王瑞祥.纳米石墨冷冻油对R600a冰箱的性能影响[J].化工学报,2014,65(2):516-521. 浏览
[33]  Liu Z H,Xiong J G,Bao R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface[J]. Int. J. Multiphase Flow,2007,33:1284-1295.
[34]  Heris S Zeinali,Esfahany M Nasr,Etemad S G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J]. Int. J. Heat Fluid Flow,2007,28(2):203-210.
[35]  Trisaksri Visinee,Wongwises Somchai. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids[J]. International Journal of Heat and Mass Transfer,2009,52(5-6):1582-1588.
[36]  Peng Hao,Ding Guoliang,Jiang Weiting,et al. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube[J]. Int. J. Refrig.,2009,32(6):1259-1270.
[37]  Peng H,Ding G.,Hu H,et al. Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant-oil mixture[J]. Int. J. Thermal Sci.,2010,49:2428-2438.
[38]  Peng Hao,Ding Guoliang,Hu Haitao,et al. Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles[J]. International Journal of Heat and Mass Transfer,2009,54(6):1839-1850.
[39]  Peng H,Ding G.,Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid[J]. Exp. Thermal Fluid Sci.,2011,35:960-970.
[40]  Bi Shengshan,Guo Kai,Liu Zhigang,et al. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid[J]. Energy Convers. Manage,2011,52(1):733-737.
[41]  Mahbubul I M,Saidur R,Amalina M A. Thermal conductivity,viscosity and density of R141b refrigerant based nanofluid[J]. Proc. Eng.,2013,56:310-315.
[42]  Mahbubul I M,Saidur R,Amalina M A. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant[J]. International Communications in Heat and Mass Transfer,2013,43:100-104.
[43]  Mahbubul I M,Fadhilah S A,Saidur R,et al. Thermophysical properties and heat transfer performance of Al2O3/R134a nanorefrigerants[J]. International Journal of Heat and Mass Transfer,2013,57(1):100-108.
[44]  Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids[J]. Energy Convers. Manage,2011,52(1):789-793.
[45]  Sitprasert C,Dechaumphai P,Juntasaro V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer[J]. J. Nanopart. Res.,2009,11(6):1465-1476.
[46]  Jiang W,Ding G,Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants[J]. International Journal of Thermal Sciences,2009,48:1108-1115.
[47]  Kedzierski M A,Gong M. Effect of CuO nanolubricant on R134a pool boiling heat transfer[J]. Int. J. Refrigeration,2009,32:791-799.
[48]  Kedzierski M A. Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer[J]. Int. J. Refrigeration,2011,34:498-508.
[49]  Bartelt K,Park Y,Liu L,et al. Flow boiling of R134a/POE/CuO nanofluids in a horizontal tube[C]//International Refrigeration and Air Conditioning Conference,Purdue,2008. West Lafayette,Indiana,USA.
[50]  Akhavan-Behabadi M A,Nasr M,Baqeri S. Experimental investigation of flow boiling heat transfer of R600a/oil/CuO in a plain horizontal tube[J]. Experimental Thermal and Fluid Science,2014,58:105-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133