全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

分子模拟指导化学修饰对有机相中脂肪酶的性能强化

DOI: 10.16085/j.issn.1000-6613.2015.10.032, PP. 3725-3730

Keywords: 化学修饰,模拟,手性仲醇,对映体选择性,脂肪酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

脂肪酶是一种应用广泛的重要生物催化剂,它对手性底物具有良好的立体选择性,而且能适应包括疏水有机溶剂在内的多种非天然反应介质。提高脂肪酶在非天然环境中的立体选择性已经成为关于脂肪酶的研究热点。然而已有研究在提高选择性的同时,往往伴随催化活力的降低。本文提出一种基于计算机模拟的理性改造方法,能够在不降低脂肪酶活力的情况下大幅提高其在有机介质中的立体选择性。以洋葱假单胞菌脂肪酶(Pseudomonascepacialipase,PcL)在正己烷中催化手性仲醇的转酯化反应为模型,借助分子动力学模拟,预测N-乙酰咪唑(NAI)修饰PcL的效果。蛋白质谱证实产生主要影响的是位于PcL活性口袋内的Tyr29残基。进一步通过实验验证,发现经NAI修饰酪氨酸残基(Tyr)后PcL催化拆分手性仲醇的对映体选择性最高从E=12.6提高到48.1,同时催化活力也有所提高。

References

[1]  崔丽娟,徐刚,孟枭,等. 多元电解质对脂肪酶有机相拆分炔戊醇的激活[J]. 化工进展,2014,33(8):2150-2154.
[2]  戴晓庭,孟枭,徐刚,等. 酰基供体对动态动力学拆分1-四氢萘胺的影响[J]. 化工进展,2014,33(9):2421-2424.
[3]  Bajaj A,Lohan P,Jha P N,et al. Biodiesel production through lipase catalyzed transesterification:An overview[J]. J. Mol. Catal. B:Enzym.,2010,62(1):9-14.
[4]  Fan Y X,Qian J Q. Lipase catalysis in ionic liquids/supercritical carbon dioxide and its applications[J]. J. Mol. Catal. B:Enzym.,2010,66(1):1-7.
[5]  Laane C,Boeren S,Vos K,et al. Rules for optimization of biocatalysis in organic solvents[J]. Biotechnol. Bioeng.,1987,30(1):81-87.
[6]  Yadav G D,Lathi P S. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilized lipases[J]. Biochem. Eng. J.,2003,16(3):245-252.
[7]  Lemke K,Lemke M,Theil F. A three-dimension predictive active site model for lipase from Pseudomonas cepacia[J]. J. Org. Chem.,1997,62(18):6268-6273.
[8]  Fernandez L R. Lipase from Thermomyces lanuginosus:Uses and prospects as an industrial biocatalyst[J]. J. Mol. Catal. B:Enzym.,2010,62(3):197-212.
[9]  Contesini F J,Lopes D B,Macedo G A,et al. Aspergillus sp. lipase:Potential biocatalyst for industrial use[J]. J. Mol. Catal. B:Enzym.,2010,67(3):163-171.
[10]  Li N,Zong M H. Lipases from the genus Penicillium:Production,purification,characterization and applications[J]. J. Mol. Catal. B:Enzym.,2010,66(1):43-54.
[11]  Rodrigues R C,Fernandez L R. Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification[J]. J. Mol. Catal. B:Enzym.,2010,66(1):15-32.
[12]  Rodrigues R C,Fernandez L R. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process[J]. J. Mol. Catal. B:Enzym.,2010,64(1):1-22.
[13]  Cabrera Z,Fernandez L G,Fernandez L R,et al. Enhancement of Novozym-435 catalytic properties by physical or chemical modification[J]. Proc. Biochem.,2009,44:226-231.
[14]  Palomo J M,Fernandez L G,Guisan J M,et al. Modulation of immobilized lipase enantioselectivity via chemical amination[J]. Adv. Synth. Catal.,2007,349(7):1119-1127.
[15]  Rodrigues R C,Berenguer M A,Fernandez L R. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes[J]. Adv. Synth. Catal.,2011,353(13):2216-2238.
[16]  Mateo C,Palomo J M,Fernandez L G,et al. Improvement of enzyme activity,stability and selectivity via immobilization techniques[J]. Enzym Microb. Technol.,2007,40(6):1451-1463.
[17]  Chen H,Wu J P,Yang L R,et al. A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase[J]. Biochim. Biophys Acta,2013,1834(12):2494-2501.
[18]  Tuomi W V,Kazlauskas R J. Molecular basis for enantioselectivity of lipase from Pseudomonas cepacia toward primary alcohols. Modeling,kinetics,and chemical modification of Tyr29 to increase or decrease enantioselectivity[J]. J. Org. Chem.,1999,64(8):2638-2647.
[19]  Kim K K,Song H K,Shin D H,et al. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor[J]. Sturcture,1997,5(2):173-185.
[20]  Peretz A,Pell L,Gofman Y,et al. Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier[J]. PANS,2010,107(35): 15637-15642.
[21]  Case D A,Darden T A,Cheatham T E,et al. AMBER 11[C]. San Francisco:University of California,2011,
[22]  Jorgensen W L,Chandrasekhar J,Madura J D,et al. Comparison of simple potential functions for simulating liquid water[J]. J. Chem. Phys.,1983,79(2):926-935.
[23]  Chen C S,Fujimoto Y,Girdaukas G,et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers[J]. J. Am. Chem. Soc.,1982,104(25):7294-7299.
[24]  Furth A J,Hope D B. Studies on the chemical modification of the tyrosine residue in bovine neurophysin-II[J]. Biochem. J.,1970,116:545-553.
[25]  Norin M,Olsen O,Svendsen A,et al. Theoretical studies of Rhizomucor miehei lipase activation[J]. Protein Eng.,1993,6(8):855-863.
[26]  Ru M T,Dordick J S,Reimer J A,et al. Optimizing the salt-induced activation of enzymes in organic solvents:Effects of lyophilization time and water content[J]. Biotechnol. Bioeng.,1999,63(2):233-241. 3.0.CO;2-S target="_blank">
[27]  Gupta N,Rathi P,Gupta R. Simplified para-nitrophenyl palmitate assay for lipases and esterases[J]. J. Med. Chem.,2003,46(4):499-511.
[28]  Zehl M,Lescic L,Abramic M,et al. Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry:Localization of the active site serine[J]. J. Mass Spectrom.,2004,39(12):1474-1483.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133