Tak Y,Hong S J,Lee J S,et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array[J]. Cryst. Growth Des.,2009,9(6):2627-2632.
[3]
杜运兴. ZnS荧光量子点的油水界面法合成及发光性质研究[D]. 上海:东华大学,2011.
[4]
Kortan A R,Hull R,Opila R L,et al. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds,and vice versa,in inverse micelle media[J]. J. Am. Chem. Soc.,1990,112(4):1327-1332.
[5]
Tian J,Gao R,Zhang Q,et al. Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells via homogeneous distribution of quantum dots in TiO2 film[J]. J. Phys. Chem. C,2012,116(35):18655-18662.
[6]
王海平. 一维纳米材料的合成及其在量子点敏化太阳能电池中的应用[D]. 兰州:兰州大学,2010.
[7]
Margraf J T,Ruland A,Sgobba V,et al. Quantum dot-sensitized solar cells:Understanding linker molecules through theory and experiment [J]. Langmuir,2013,29(7):2434-2438.
[8]
Yun H J,Paik T, Edley M E,et al. Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments[J]. Appl. Mater. Interfaces,2014,6(5):3721-3728.
[9]
Huang Q,Li F,Gong Y,et al. Recombination in SnO2-based quantum dots sensitized solar cells:The role of surface states[J]. J. Phys. Chem. C,2013, 117(21):10965-10973.
Haque S A,Palomares E,Cho B M,et al. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells:The minimization of kinetic redundancy[J]. J. Am. Chem. Soc.,2005,127(10):3456-3462.
[12]
Haque S A,Tachibana Y,Willis R L,et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films[J]. J. Phys. Chem. B,1999,104(3):538-547.
[13]
Lee Y L,Chang C H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells[J]. J. Power Source,2008,185(16):584-588.
Larramona G,Choné C,Jacob A,et al. Nanostructured photovoltaic cell of the type titanium dioxide,cadmium sulfide thin coating,and copper thiocyanate showing high quantum efficiency[J]. Chem. Mater.,2006,18(6):1688-1696.
[17]
Kopidakis N,Benkstein K D,van de Lagemaat J,et al. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells[J]. J. Phys. Chem. B,2003,107(41):11307-11315.
[18]
McPeak K M,Baxter J B. ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor[J]. Cryst. Growth Des.,2009,9(10):4538-4545.
[19]
Shalom M,Dor S,Rühle S,et al. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating[J]. J. Phys. Chem. C,2009,113(9):3895-3898.
[20]
Santra P K,Kamat P V. Mn-doped quantum dot-sensitized solar cells:A strategy to boost efficiency over 5%[J]. J. Am. Chem. Soc.,2012,134(5):2508-2511.
[21]
Yang H,Holloway P H,Santra S. Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots[J]. J. Chem. Phys.,2004, 121(15):7421-7426.
[22]
Zhang Y,Gan C,Muhammad J,et al. Enhanced fluorescence intermittency in Mn-doped single ZnSe quantum dots[J]. J. Phys.Chem. C,2008,112(51):20200-20205.
[23]
Kongkanand A, Tvrdy K,Takechi K,et al. Quantum dot solar cells:Tuning photoresponse through size and shape control of CdSe-TiO2 architecture[J]. J. Am. Chem. Soc., 2008,130(12):4007-4015.
[24]
Lee Y,Chi C,Liau S. CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell[J]. Chem. Mater.,2009,22(3):922-927.
[25]
Kamat P V. Quantum dot solar cells:Semiconductor nanocrystals as light harvesters[J]. J. Phys. Chem. C,2008,112(48):18737-18753.
[26]
Williams E S,Major K J,Tobias A,et al. Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots[J]. J. Phys. Chem. C,2013,117(8):4227-4237.
[27]
Kamat P V,Christians J A,Radich J G. Quantum dot solar cells:Hole transfer as a limiting factor in boosting the photoconversion efficiency[J]. Langmuir, 2014,30(20):5716-5725.
Wang H,Luan C,Xu X,et al. In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporous
[36]
TiO2 films for quantum dot sensitized solar cells[J]. J. Phys. Chem.C.,2011,116(1):484-489.
[37]
Tvrdy K,Kamat P V. Substrate driven photochemistry of CdSe quantum dot films:Charge injection and irreversible transformations
[38]
on oxide surfaces[J]. J. Phys. Chem. A,2009,113(16):3765-3772.
[39]
Tvrdy K,Frantsuzov P A,Kamat P V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles[J]. Proc. Natl. Acad. Sci. USA,2011,108:29-34.
[40]
Chakrapani V,Baker D,Kamat P V. Understanding the role of the sulfide redox couple (S2-/Sn2-) in quantum dot-sensitized solar cells[J]. J. Am. Chem. Soc.,2011,133:9607-9615.
[41]
毛永强. 量子点材料的结构设计、生化分析及光电转换的研究[D]. 天津:天津大学,2012.
[42]
Jin-nouchi Y,Naya S,Tada H. Quantum dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films[J]. J. Phys. Chem. C,2010,114(39):16837-16842.
[43]
Lee H,Wang M,Chen P,et al. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process[J]. Nano Lett.,2009,9(12):4221-4227.
Lan J,Wei T,Feng S,et al. Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities[J]. J. Phys. Chem. C,2012,116(49):25727-25733.
[47]
Wolfbauer G,Bond A M,MacFarlane D R. A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells,2001,70:85-101.
Wang X,Zhu H J,Xu Y M,et al. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide:Synthesis and photoelectrochemical properties[J]. ACS Nano,2010,4(6):3302-3308.
[50]
Fan S,Fang B,Kim J H,et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum dot solar cells[J]. Langmuir,2010,26(16):13644-13649.