全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

纳米多相催化材料在常温反应中的应用

DOI: 10.16085/j.issn.1000-6613.2015.10.003, PP. 3530-3539

Keywords: 多相催化,纳米材料,常温反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,纳米材料在化学反应过程中扮演着越来越重要的角色。纳米材料作为多相催化剂,具有高活性、高选择性、高稳定性而且易于回收利用等优点。将精心设计的纳米材料用于催化一系列反应,使其在常温下进行,可以促进资源的高效利用和节能减排,在化工领域有着广阔的应用前景。本文详细介绍了以下几种类型的纳米材料,即金属纳米粒子材料、固载型金属离子复合物纳米材料、金属氧化物纳米材料和固体酸纳米材料。并阐述了上述纳米材料的结构特点及在催化方面的优势,同时结合实例,着重探讨了上述纳米材料作为多相催化剂在氧化反应、还原反应、偶联反应等多种节能高效反应中的应用。纳米材料因其多方面的优点以及广阔的应用范围,是一种极具发展潜力的多相催化材料。

References

[1]  Lam F L Y,Li M C L,Chau R S L,et al. Catalysis at room temperature:Perspectives for future green chemical processes[J]. WIREs Energy Environ.,2015,4(4):316-338.
[2]  Zhu X,Hoang T,Lobban L,et al. Low CO content hydrogen production from bio-ethanol using a combined plasma reforming-catalytic water gas shift reactor[J]. Applied Catalysis,B:Environmental,2010,94(3-4):311-317.
[3]  韩丹,张爱文,高官俊,等. 负载型纳米Au催化剂光催化性能的研究进展[J]. 化工进展,2012,31(2):435-440.
[4]  White R J,Luque R,Budarin V L. Supported metal nanoparticles on porous materials. Methods and applications[J]. Chemical Society Reviews,2009,38(2):481-494.
[5]  Wu B,Zheng N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today,2013,8(2):168-197.
[6]  Hu J,Chen Z,Li M,et al. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane[J]. ACS Applied Materials& Interfaces,2014,6(15):13191-13200.
[7]  Yasukawa T,Miyamura H,Kobayashi S. Chiral metal nanoparticle-catalyzed asymmetric C—C bond formation reactions[J]. Chemical Society Reviews,2014,43(5):1450-1461.
[8]  Sawai K,Tatumi R,Nakahodo T,et al. Asymmetric Suzuki-Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature[J]. Angewandte Chemie,International Edition,2008,47(36):6917-6919.
[9]  Wigley T M L,Richels R,Edmonds J A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations[J]. Nature,1996,379(6562):240-243.
[10]  Furukawa H,Cordova K E,O'Keeffe M,et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444.
[11]  Férey G,Mellot-Draznieks C,Serre C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
[12]  Liu H,Li Y,Jiang H. Significant promoting effects of Lewis acidity on Au-Pd systems in the selective oxidation of aromatic hydrocarbons[J]. Chemical Communications,2012,48(67):8431-8433.
[13]  Hwang Y K,Hong D Y,Chang J S,et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J]. Angewandte Chemie,International Edition,2008,47(22):4144-4148.
[14]  Pan Y,Yuan B,Li Y,et al. Multifunctional catalysis by Pd@MIL-101:One-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework[J]. Chemical Communications,2010,46:2280-2282.
[15]  Liu H,Liu Y,Li Y,et al. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. Journal of Physical Chemistry C,2010,114(31):13362-13369.
[16]  Liu H,Li Y,Luque R,et al. A Tuneable bifunctional water-compatible heterogeneous catalyst for the selective aqueous hydrogenation of phenols[J]. Advanced Synthesis & Catalysis,2011,353(17):3107-3113.
[17]  Chen L,Chen H,Luque R,et al. Metal-organic framework encapsulated Pd nanoparticles:Towards advanced heterogeneous catalysts.[J]. Chemical Science,2014,5(10):3708-3714.
[18]  Proch S,Herrmannsd?rfer J,Kempe R,et al. Pt@MOF-177:Synthesis,room-temperature hydrogen storage and oxidation catalysis quick view other sources[J]. Chemistry:A European Journal,2008,14(27):8204-8212.
[19]  Chen L,Chen H,Li Y. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J]. Chemical Communications,2014,50(94):14752-14755.
[20]  Su D S,Perathoner S,Centi G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews,2013,113(8):5782-5716.
[21]  Yang Y,Chiang K,Burke N. Porous carbon-supported catalysts for energy and environmental applications:A short review[J]. Catalysis Today,2011,178(1):197-205.
[22]  Zhu Q-L,Tsumori N,Xu Q. Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions[J]. Chemical Science,2014,5(1):195-199.
[23]  Zhong W,Liu H,Bai C,et al. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-Based catalysts[J]. ACS Catalysis,2015,5:1850-1856.
[24]  Mahyari M,Shaabani A. Nickel nanoparticles immobilized on three-dimensional nitrogen-doped graphene as a superb catalyst for the generation of hydrogen from the hydrolysis of ammonia borane[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability,2014,2(39):16652-16659.
[25]  John J,Gravel E,Hagège A,et al. Catalytic oxidation of silanes by carbon nanotube-gold nanohybrids[J]. Angewandte Chemie International Edition,2011,50(33):7533-7536.
[26]  黄超,杨惠,杨旭,等. 介孔氧化硅负载贵金属催化剂研究进展[J]. 化工进展,2014,33,6:1459-1464.
[27]  Ojeda M,Pineda A,Romero A A,et al. Mechanochemical synthesis of maghemite/silica nanocomposites:Advanced materials for aqueous room-temperature catalysis[J]. ChemSusChem,2014,7(7):1876-1880.
[28]  Karimia B,Esfahani F K. Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols[J]. Advanced Synthesis & Catalysis,2012,354(7):1319-1326.
[29]  Zhang S,Gai S,He F,et al. In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction[J]. Nanoscale,2014,6(19):11181-11188.
[30]  Ma C Y,Mu Z,Li J J,et al. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene[J]. Journal of the American Chemical Society,2010,132(8):2608-2613.
[31]  Shekhar M,Wang J,Lee W-S,et al. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2[J]. Journal of the American Chemical Society,2012,134(10):4700-4708.
[32]  Liu J,Zou S,Li S,et al. A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol-gel process[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability,2013,1(12):4038-4047.
[33]  Layek K,Kantam M L,Shirai M,et al. Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature[J]. Green Chemistry,2012,14(11):3164-3174.
[34]  王喜兵,纪拓,李力成,等. Au/TiO2-B 催化剂的 CO 低温氧化性能[J]. 化工学报,2014,65(5):1636-1643. 浏览
[35]  Chen B-B,Shi C,Crocker M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts[J]. Applied Catalysis,B:Environmental,2013,132-133:245-255.
[36]  笪国进,欧阳李科,徐晶,等. 吡啶改性Pd/SiO2催化剂用于H2和O2直接合成H2O2[J]. 化工学报,2013,64(2):561-567. 浏览
[37]  Bronstein L M,Shifrina Z B. Dendrimers as encapsulating,stabilizing,or directing agents for inorganic nanoparticles[J]. Chemical Reviews,2011,111(9):5301-5344.
[38]  Dhital R N,Kamonsatikul C,Somsook E,et al. Low-temperature carbon-chlorine bond activation by bimetallic gold/palladium alloy nanoclusters:An application to Ullmann coupling[J]. Journal of the American Chemical Society,2012,134(50):20250-20253.
[39]  Miyamura H,Matsubara R,Miyazaki Y,et al. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives[J]. Angewandte Chemie,International Edition,2007,46(22):4151-4154.
[40]  Vivek P,Rafael L,et al. Megnetically recoverable nanocatalysts[J]. Chemical Reviews,2011,111(5):3036-3075.
[41]  Schlogl R,Abd Hamid S B,Sharifah B. Nanocatalysis:Mature science revisited or something really new?[J]. Angewandte Chemie International Edition,2004,43(13):1628-1637.
[42]  Pagliaro M,Pandarus V,Ciriminna R,et al. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions[J]. ChemCatChem.,2012,4(4):432-445.
[43]  Philippe Serp,Karine Philippot. Nanomaterials in Catalysis[M]. Weinheim,Germany:Wiley-VCH,2012:1-54.
[44]  Yuan B,Pan Y,Li Y,et al. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media[J]. Angewandte Chemie,International Edition,2010,49(24):4054-4058.
[45]  Liu H,Chen G,Jiang H,et al. From alkyl aromatics to aromatic esters:Efficient and selective C-H activation promoted by a bimetallic heterogeneous catalyst[J]. ChemSusChem,2012,5(10):1892-1896.
[46]  Balu A M,Lin C S K,Liu H,et al. Iron oxide functionalized MIL-101 materials in aqueous phase selective oxidations[J]. Applied Catalysis,A:General,2013,455:261-266.
[47]  Genna D T,Wong-Foy A G,Matzger A J,et al. Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange[J]. Journal of the American Chemical Society,2013,135(29):10586-10589.
[48]  Chen L,Rangan S,Li J,et al. A molecular Pd(II)complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C—Cl bond activation[J]. Green Chemistry,2014,16(8):3978-3985.
[49]  Polshettiwar V,Baruwati B,Varma R S. Nanoparticle-supported and magnetically recoverable nickel catalyst:A robust and economic hydrogenation and transfer hydrogenation protocol[J]. Green Chemistry,2009,11(1):127-131.
[50]  Kong G-Q,Ou S,Zou C,et al. Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis[J]. Journal of the American Chemical Society,2012,134(48):19851-19857.
[51]  Fernández-García M,Martínez-Arias A,Hanson J C,et al. Nanostructured oxides in chemistry:Characterization and properties[J]. Chemical Reviews,2004,104(9):4063-4104.
[52]  Kn?zinger H. Perspective:Surface science:Catalysis on oxide surfaces[J]. Science,2000,287(5457):1407,1409.
[53]  范立群,隋吴彬. 金属氧化物纳米复合催化剂的研究进展[J]. 化工进展,2013,32(8):1832-1861.
[54]  Li Y,Ji H,Chen C,et al. Concerted two-electron transfer and high selectivity of TiO2 in photocatalyzed deoxygenation of epoxides[J]. Angewandte Chemie,International Edition,2013,52(48):12636-12640.
[55]  Shiraishi Y,Hirakawa H,TogawaY,et al. Noble-metal-free deoxygenation of epoxides:Titanium dioxide as a photocatalytically regenerable electron-transfer catalyst[J]. ACS Catalysis,2014,4(6):1642-1649.
[56]  Xie X,Li Y,Liu Z Q,et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature,2009,458(7239):746-749.
[57]  Ca?eque T,Truscott F M,Rodriguez R,et al. Electrophilic activation of allenenes and allenynes:Analogies and differences between Bronsted and Lewis acid activation[J]. Chemical Society Reviews,2014,43(9):2916-2926.
[58]  Busca G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chemical Reviews,2007,107(11):5366-5410.
[59]  Toshio Okuhara. Water-tolerant solid acid catalysts[J]. Chemical Reviews,2002,102(10):3641-3665.
[60]  Climent M J,Corma A,Iborra S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals[J]. Chemical Reviews,2011,111(2):1072-1133.
[61]  Liu F,Sun J,Zhu L,et al. Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions[J]. Journal of Materials Chemistry,2012,22(12):5495-5502.
[62]  Horike S,Dincǎ M,Tamaki K,et al. Size-selective lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. Journal of the American Chemical Society,2008,130(18):5854-5855.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133