全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

微流控反应器中苯酚在Ti/SnO2-Sb2O5电极上的阳极氧化分析

DOI: 10.16085/j.issn.1000-6613.2015.10.040, PP. 3785-3789

Keywords: 微流控,反应器,,电解,Ti/SnO2-Sb2O5

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前在电化学氧化处理法降解苯酚废水的研究过程中,研究者多将重心放在活性电极的探索及制备上,而对于反应器的开发鲜有报道。就这一问题,本文研究了新型微流控反应器中苯酚的电化学降解效果。电化学氧化实验在装有Ti/SnO2-Sb2O5阳极的微型流通池中操作进行,实验对循环体系的体积流率ΦV、电极间距h的影响进行了考察。结果表明,当流通电解槽中的阴阳极间距采用微米级尺寸时,苯酚的阳极氧化反应取得了较快的氧化速度。在em=20mA/cm2、ΦV=0.54mL/min的电解条件下,电解2~3h苯酚去除率即可达到90%以上,相同流速下电极间距h越小降解速率越快。且由数据回归得到了苯酚的一系列随h的减小而增大的准一级反应的反应速率常数。这一结论表明微流控电解槽内的苯酚降解过程主要传质控制过程。

References

[1]  程子洪,高占先,徐军等. 葡萄糖、淀粉、苯酚电化学氧化耦合制氢行为[J]. 化工进展,2013,32(7):1542-1564.
[2]  Ortiz-Gomez A B,Serrano-Rosale,Benito S R,et al. Enhanced mineralization of phenol and other hydroxylated compounds in a photocatalytic process assisted with ferric ions[J]. Chemical Engineering Science,2008,63:520-557.
[3]  Khataee A R,Fathinia M,Zarei M,et al. Modeling and optimization of photocatalytic/photoassisted electro-Fenton like degradation of phenol using a neural network coupled with genetic algorithm[J]. Journal of Industrial and Engineering Chemistry,2014,20:1852-1860.
[4]  Wang Y Q,Gu B,Xu W L,et al. Electro-catalytic degradation of phenol on several metal-oxide anodes[J]. Journal of Hazardous Materials,2009,162:1159-1164.
[5]  Feng Y J,Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Research,2003,37:2399-2407.
[6]  Li M,Feng C,Hu W W,et al. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt[J]. Journal of Hazardous Materials,2009,162:455-462.
[7]  Li X Y. Cui Y H,Feng Y J,et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J]. Water Research,2005,39:972-1981.
[8]  Cartaxo M A M,Ablad K,Douch J,et al. Phenol electrooxidation on Fe-Co3O4 thin film electrodes in alkaline medium[J]. Chemosphere,2012,86:341-347.
[9]  Comninellis C H,Pulgarin C. Anodic oxidation of phenol for waste water treatment[J]. Journal of Applied Electrochemistry,1991,21:703-703.
[10]  Tahar N B,Savall A. Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials[J]. Electrochimica Acta,2009,54:4809-4816.
[11]  RabaaouiN,Moussaoui Y,Allagui M S,et al. Anodic oxidation of nitrobenzene on BDD electrode:Variable effects and mechanisms of degradation[J]. Separation and Purification Technology,2013,107:318-323.
[12]  Scialdone O,Guarisco C,Galia A,et al. Anodic abatement of organic pollutants in water in micro reactors[J]. Journal of Electroanalytical Chemistry,2010,638:293-296.
[13]  Scialdone O,Guarisco C,Galia A,et al. Oxidation of organics in water in microfluidic electrochemical reactors:Theoretical model and experiments[J]. Electrochimica Acta,2011,58:463-473.
[14]  Scialdone O,Galia A,Sabatino S. Electro-generation of H2O2 and abatement of organic pollutant in water by an electro-Fenton process in a microfluidic reactor[J]. Electrochemistry Communications,2013,26:45-47.
[15]  He P,Watts P,Marken F,et al. Electrolyte free electro-organic synthesis:The cathodic dimerisation of 4-nitrobenzylbromide in a micro-gap flow cell[J]. Electrochemistry Communications,2005,7:918-924.
[16]  Vogt H. Role of single-phase free convection in mass transfer at gas evolving electrodes. Ⅱ. Experimental verification[J]. Electrochimica Acta,1993,38:1427-1427.
[17]  Amatore C,Oleinick A,Klymenko O V,et al.. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry:Concept,theory,and validation[J]. ChemPhysChem,2005,6:1581-1589.
[18]  Amatore C,Klymenko O V,Svir I. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry:Optimization of electrode locations[J]. ChemPhysChem,2006,7:482-487.
[19]  Amatore C,Mota N Da,Cella C,et al. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode[J]. Analytical Chemistry,2007,79:8502-8510.
[20]  Scialdone O,Corrado E,Galia A,et al. Electrochemical processes in macro and microfluidic cells for the abatement of chloroacetic acid from water[J]. Electrochimica Acta,2014,132:15-24.
[21]  Panizza M,Cerisola G. Electrochemical degradation of methyl red using BDD and PbO2 anodes[J]. Industrial & Engineering Chemistry Research,2008,47:6816-6820.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133