全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

生物质制乙二醇技术进展与发展前景

DOI: 10.16085/j.issn.1000-6613.2015.10.014

Keywords: 生物质,糖醇,纤维素,发酵,乙二醇

Full-Text   Cite this paper   Add to My Lib

Abstract:

乙二醇是一种重要的基本有机原料,与传统石油化工生产工艺相比,生物质原料路线不仅具有原料资源丰富、工艺路线灵活等优势,而且为拓展我国乙二醇产品来源提供了更多选择。本文综述了生物质经催化转化及生物转化制备乙二醇工艺的催化剂体系与反应机理,包括糖类加氢制乙二醇、纤维素直接催化转化制乙二醇、生物质发酵制乙二醇、生物质发酵经乙二醛还原制乙二醇工艺,介绍了木质纤维素原料的杂质影响与处理方法,并对该领域发展前景进行了展望,指出改善生物质原料处理方法、开发高效稳定的催化体系、优化工艺以提高乙二醇产品质量是未来的研究重点。

References

[1]  陈军,陶占良. 能源化学[M]. 第2版. 北京:化学工业出版社,2014:359.
[2]  李俊涛,周艳,张红军,等. 葡萄糖加氢制山梨醇催化剂的研究进展[J]. 河南化工,2008,25(10):6-8.
[3]  徐雷金,孔令鸟,刘维,等. Raney-Ni催化剂制备及在葡萄糖加氢合成山梨醇中的应用[J]. 化工生产与技术,2013,20(6):36-41,52.
[4]  Hoffer B W,Crezee E,Devred F,et a1. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol[J].Applied Catalysis A:General,2003(253):437-452.
[5]  刘维,张群峰,李小年. 钼改性雷尼镍催化剂的葡萄糖加氢性能.[J] 工业催化,2010,18(11):36-40.
[6]  杜文强,王越,吕连海. 非晶态 NiMoAl合金催化葡萄糖加氢制备山梨醇[J]. 精细化工,2007,24(12):1204-1206.
[7]  Chen L,Wang S,Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew. Chem. Int. Ed.,2007,46:7636-7639.
[8]  Zhu W W,Yang H M,Chen J Z,et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Green Chemistry,2014,16(3):1534-1542.
[9]  Xi J X,Zhang Y,Xia Q N,Liu X H,et al. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported ruthenium bifunctional catalyst[J]. Applied Catalysis A:General,2013,459:52-58.
[10]  Palkovits R,Tajvidi K,Ruppert AM,et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chem. Commun.,2011,47:576-578.
[11]  Fukuoka A,Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie:International Edition,2006,45(31):5161-5163.
[12]  Van de Vyver S,Geboers J,Schutyser W,et al. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. ChemSusChem.,2012,5(8):1549-1558.
[13]  Hilgert J,Meine N,Rinaldi R,et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols[J]. Energy & Environmental Science,2013,6(1):92-96.
[14]  Bottoms R R. Hydrogenolysis of polyhydric alcohols:US,2335731[P].1943-11-30.
[15]  Miller Aaron B,Raghunath Malati,Sokolovskii Valery,et al. Catalyst for polyol hydrogenolysis:US,20140249334[P]. 2014-09-04.
[16]  Blaise J Arena. Hydrocracking of polyols:US,4496780[P]. 1985-01-29.
[17]  周静红,王雪峰,刘国才,等. 固体碱负载Ru催化山梨醇氢解制备低碳二元醇[J]. 化工学报,2014,65(7):2762-2769.
[18]  陈洁静,孙兆林,宋丽娟,等. 镍钌/黏土催化糖醇混合物氢解制低碳二元醇[J]. 石油化工,2012,41(4):401-404.
[19]  刘琪英,廖玉河,石宁,等. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展,2013,32(5):1035-1042.
[20]  Wang K Y,Hawley M C,Furney T D.Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Industrial & Engineering Chemistry Research,1995,34(11):3766-3770. target="_blank">
[21]  Liu G C,Zhou J H,Sui Z J,et al. Hydrogenolysis of sorbitol to glycols over carbon nanofibers supported ruthenium catalyst:The role of base promoter[J]. Chin. J. Catal., 2014, 35(5):692-702.
[22]  Sun J Y,Liu H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts[J]. Green Chemistry,2011,13:135-142.
[23]  Li N,Huber G W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-A12O3:Identification of reaction intermediates[J]. Journal of Catalysis,2010,270:48-59.
[24]  徐周文. 一种由山梨醇裂解生产二元醇和多元醇的方法:中国,1683293[P]. 2005-10-19.
[25]  Zhao Guanhong,Zheng Mingyuan,Zhang Junying,et al. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind. Eng. Chem. Res.,2013,52:9566-9572.
[26]  Roselinde Ooms,Michiel Dusselier,Jan A Geboers,et al. Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor:High productivity and reaction network elucidation[J]. Green Chemistry,2014,16:695-707.
[27]  Ji Na,Zhang Tao,Zheng Mingyuan,et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed.,2008,47:8510-8513.
[28]  张涛,纪娜,郑明远,等. 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用:中国,101648140[P]. 2010-02-17.
[29]  Ji N,Zheng M Y,Wang A Q,et al. Nickel-promoted tungsten carbide catalysts for cellulose conversion:Effect of preparation methods[J]. ChemSusChem,2012,5:939-944.
[30]  Zhang Yanhua,Wang Aiqin,Zhang Tao. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem. Commun.,2010,46(6):862-864.
[31]  Wang Hongjuan,Zhu Lili,Peng Song,et al. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy,2012,37(1):192-196.
[32]  Wang Xicheng,Meng Lingqian,Wu Feng,et al. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts[J]. Green Chemistry,2012,14(3):758-765.
[33]  Xiao Zihui,Jin Shaohua,Pang Min,et al. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly effcient CuCr catalysts[J]. Green Chemistry,2013,15(4):891-895.
[34]  Tai Zhijun,Zhang Junying,Wang Aiqin,et al. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chemical Communications,2012,48(56):7052-7054.
[35]  Pang J F,Zheng M Y,Wang A Q,et al. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glyco[J]. Ind. Eng. Chem. Res.,2011,50:6601-6608.
[36]  Pang J F,Zheng M Y,Wang A Q,et al. Catalytic conversion of concentrated miscanthus in water for ethylene glycol production[J]. AIChE J.,2014,60(6):2254-2262.
[37]  Pang Jifeng,Zheng Mingyuan,Sun Ruiyan,et al. Catalytic conversion of cellulosic biomass to ethylene glycol:Effects of inorganic impurities in biomass[J]. Bioresource Technology,2015,175:424-429.
[38]  Spodsberg Nikolaj. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same:WO,2012103293[P]. 2012-08-02.
[39]  Morant Marc, Patkar Shamkant,Ding Hanshu,et al. Polypeptides having beta-glucosidase activity and polynucleotides encoding same:WO,2012003379[P]. 2012-01-05.
[40]  钱伯章. 诺维信及M&G化学品公司合作在中国生产生物基塑料[J]. 聚酯工业,2014,27(2):35-35.
[41]  刘颖. 以小麦秸杆为原料生产乙二醇的可行性探索[J]. 广州化工,2012,40(17):83-84.
[42]  Peter Kalagias. Processes for isolating or purifying propylene glycol,ethylene glycol and products produced therefrom:US,20080275277[P]. 2008-11-06.
[43]  凯文·阿德拉夫,P D 布鲁姆,威廉·克里斯·霍夫曼,等. 用于产生生物衍生的丙二醇的改进的方法:中国,103402955[P]. 2013-11-20.
[44]  陈力群. 生物基PDT?聚酯产品性能研究[J]. 国际纺织导报,2014(3):36-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133