全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

Zn2+、Ca2+和Mn2+对丙酮丁醇发酵的协同影响

DOI: 10.16085/j.issn.1000-6613.2015.10.031, PP. 3719-3724

Keywords: 丁醇发酵,丙酮丁醇梭菌,金属元素,协同效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

在丙酮丁醇发酵中共同添加0.001g/LZnSO4·7H2O和4.0g/LCaCO3时,丁醇及总溶剂产量达到14.41g/L和23.69g/L,发酵终点乙酸和丁酸浓度为2.33g/L和1.02g/L。当共同添加0.001g/LZnSO4·7H2O、4.0g/LCaCO3和0.8g/LMnSO4·H2O时,丁醇的比生成速率为0.48g/(g·h),相对于共同添加Zn2+和Ca2+条件下的丁醇比生成速率0.23g/(g·h)提高了108.69%,而发酵终点乙酸和丁酸浓度分别为1.99g/L和0.54g/L,同比分别降低了14.59%和47.06%。Zn2+、Ca2+和Mn2+3种金属离子对丙酮丁醇发酵具有正向协同调控作用。

References

[1]  Gronenberg L S,Marcheschi R J,Liao J C. Next generation biofuel engineering in prokaryotes[J]. Curr. Opin. Chem. Biol.,2013,17(3):462-471.
[2]  Lin L,Cunshan Z,Vittayapadung S,et al. Opportunities and challenges for biodiesel fuel[J]. Appl. Energ.,2011,88(4):1020-1031.
[3]  Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum[J]. Appl. Microbiol. Biot.,2014,98(13):5823-5837.
[4]  Xue C,Zhao J,Chen L,et al. Integrated butanol recovery for an advanced biofuel:Current state and prospects[J]. Appl. Microbiol. Biot.,2014,98(8):3463-3474.
[5]  Xue C,Zhao X,Liu C,et al. Prospective and development of butanol as an advanced biofuel[J]. Biotechnol. Adv.,2013,31(8):1575-1584.
[6]  K?hler K A K,Rühl J,Blank L M,et al. Integration of biocatalyst and process engineering for sustainable and efficient n-butanol production[J]. Engineering in Life Sciences,2015,15(1):4-19.
[7]  Patakova P,Linhova M,Rychtera M,et al. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia:Clostridium metabolic diversity,tools for process mapping and continuous fermentation systems[J]. Biotechnol. Adv.,2013,31(1):58-67.
[8]  Abdehagh N,Tezel F H,Thibault J. Separation techniques in butanol production:Challenges and developments[J]. Biomass and Bioenergy,2014,60:222-246.
[9]  Huang H,Liu H,Gan Y. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass[J]. Biotechnol. Adv.,2010,28(5):651-657.
[10]  Gottumukkala LD,Parameswaran B,Valappil SK,et al. Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01[J]. Bioresource Technol.,2013,145:182-187.
[11]  Jones D T,Woods D R. Acetone-butanol fermentation revisited[J]. Microbiological Reviews,1986,50(4):484.
[12]  Terracciano J S,Kashket E R. Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum[J]. Appl. Environ. Microb.,1986,52(1):86-91.
[13]  Wang Y,Li X,Blaschek H P. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052:Genome-wide transcriptional analysis with RNA-Seq[J]. Biotechnol. Biofuels,2013,6(1):138.
[14]  Zhao Y,Tomas C A,Rudolph F B,et al. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation[J]. Appl. Environ. Microb.,2005,71(1):530-537.
[15]  Vallee B L,Auld D S. Zinc coordination,function,and structure of zinc enzymes and other proteins[J]. Biochemistry,1990,29(24):5647-5659.
[16]  McCall K A,Huang C,Fierke C A. Function and mechanism of zinc metalloenzymes[J]. The Journal of Nutrition,2000,130(5):1437S-1446S.
[17]  Maret W,Yetman CA,Jiang L. Enzyme regulation by reversible zinc inhibition:Glycerol phosphate dehydrogenase as an example[J]. Chem-Biol. Interact.,2001,130:891-901.
[18]  Wu Y,Xue C,Chen L,et al. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum[J]. J. Biotechnol.,2013,165(1):18-21.
[19]  Richmond C,Han B,Ezeji T C. Stimulatory effects of calcium carbonate on butanol production by solventogenic Clostridium species[J]. Continental Journal of Microbiology,2011,5(1):18-28.
[20]  Han B,Ujor V,Lai L B,et al. Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052[J]. Appl. Environ. Microb.,2012,79(1):282-293.
[21]  Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:Production and role from in lignin degradation[J]. Fems. Microbiol. Rev.,1994,13(2):125-135.
[22]  Reaney S H,Kwik-Uribe C L,Smith D R. Manganese oxidation state and its implications for toxicity[J]. Chem. Res. Toxicol.,2002,15(9):1119-1126.
[23]  Gheshlaghi R,Scharer J M,Moo-Young M,et al. Metabolic pathways of clostridia for producing butanol[J]. Biotechnol. Adv.,2009,27(6):764-781.
[24]  Gao M,Tashiro Y,Yoshida T,et al. Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using 13C tracer experiments[J]. RSC Advances,2015,5(11):8486-8495.
[25]  Harris L M,Desai R P,Welker N E,et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant:Need for new phenomenological models for solventogenesis and butanol inhibition[J]. Biotechnol. Bioeng.,2000,67(1):1-11. 3.0.CO;2-G target="_blank">
[26]  Maddox IS,Steiner E,Hirsch S,et al. The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE) fermentation process[J]. J. Mol. Microb. Biotech.,2000,2(1):95-100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133