Sun Y,Ritchie T,McEvoy S,et al. Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications[J]. Journal of Natural Gas Chemistry,2011,20:568-576.
[2]
Godinia H R,Xiao S,Kim M,et al. Dual-membrane reactor for methane oxidative coupling and dry methane reforming:Reactor integration and process intensification[J]. Chemical Engineering and Processing:Process Intensification,2013,74:153- 164.
[3]
Farniaei M,Abbasi M,Rahnama H,et al. Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying:Modeling and simulation[J]. Journal of Natural Gas Science and Engineering,2014,20:99-108.
[4]
Al-Ali K,Kodama S,Sekiguchi H. Modeling and simulation of methane dry reforming in direct-contact bubble reactor[J]. Solar Energy,2014,102:45-55.
[5]
Wood D A,Nwaoha C,Towler B F. Gas-to-liquids (GTL):A review of an industry offering several routes for monetizing natural gas[J]. Journal of Natural Gas Science and Engineering,2012,9:196-208.
[6]
Akbari M H,Ardakani A H S,Tadbir M A. A micro-reactor modeling analysis and optimization for methane autothermal reforming in fuel cell applications[J]. Chemical Engineering Journal,2011,166:1116-1125.
[7]
Walker D M,Pettit S L,Wolan J T,et al. Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni-MgO-(Ce,Zr)O2 catalysts[J]. Applied Catalysis A:General,2012,445-446:61-68.
[8]
Behroozsarand A,Pour A N. Modeling of microreactor for methane dry reforming:Comparison of Langmuir-Hinshelwood kinetic and microkinetic models[J]. Journal of Natural Gas Science and Engineering,2014,20:99-108.