全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

ZnO/CdS复合光催化剂的制备及降解四环素类抗生素

DOI: 10.16085/j.issn.1000-6613.2015.11.018, PP. 3944-3950

Keywords: 氧化锌,硫化镉,水热,表面,复合材料,光催化降解,四环素类抗生素

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用单晶Si辅助水热法低温合成了ZnO/CdS复合光催化剂,采用XRD、SEM、Dr-UV-vis等技术对材料结构和形貌进行表征,并对四环素类抗生素进行光催化降解研究。结果表明,当锌源与镉源的物料摩尔比为251、反应时间10h条件下,可获得形貌最佳的ZnO/CdS复合物,即尺寸为1μm的具有孔结构的棒状ZnO骨架表面黏附了尺寸在几十纳米的CdS粒子。CdS的复合明显降低ZnO/CdS的带隙能至2.87eV,在日光照射下反应120min,对盐酸四环素(TC)、土霉素(OTC)和强力霉素(DC)3种四环素类抗生素的光催化降解率分别达到81.65%、70.68%和54.61%,降解反应速率很快,符合一级反应动力学方程;在紫外光照射下几乎可以完全降解这3种抗生素,证明了该复合材料的高催化效率。

References

[1]  罗玉,黄斌,金玉,等. 污水中抗生素的处理方法研究进展[J]. 化工进展,2014,33(9):2471-2477.
[2]  Chee-Sanford J C,Mackie R I,Koike S,et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal of Environmental Quality,2009,38:1086-1108.
[3]  Sun H Y,Shi X,Mao J D,et al. Tetracycline sorption to coal and soil humic acids:An examination of humic structural heterogeneity[J]. Environ. Toxicol. Chem.,2010,29:1934-1942.
[4]  Rodriguez-Rojas A,Rodriguez-Beltran J,Couce A,et al. Antibiotics and antibiotic resistance:A bitter fight against evolution[J]. Int. J. Med. Microbiol.,2013,303(6-7):293-297.
[5]  Michael I,Rizzo L,McArdell CS,et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review[J]. Water Research,2013,47(3):957-995.
[6]  Liu S,Zhao X R,Sun H Y,et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal,2013,231:441-448.
[7]  Jing X R,Wang Y Y,Liu W J. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal,2014,248:168-174.
[8]  Benitez F J,Real F J,Acero J L,et al. Removal of selected pharmaceuticals in waters by photochemical processes[J]. Chemistry Technology Biotechnology,2009,84:1186-1195.
[9]  Bian Z,Zhu J,Wang S,et al. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase[J]. Journal of Physics Chemistry C ,2008,112:6258-6262.
[10]  Xu F,Chen J,Guo L,et al. In situ electrochemically etching-derived ZnO nanotube arrays for highly efficient and facilely recyclable photocatalyst[J]. Applied Surface Science,2012,258:8160-8165.
[11]  Lu Y,Wang L,Wang D,et al. A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity[J]. Materials Chemistry and Physics,2011,129:281-287.
[12]  Anju N S G,Yesodharan S,Yesodharan E P. Zinc oxide mediated sonophotocatalytic degradation of phenol in water[J]. Chemical Engineering Journal,2012,189-190:84-93.
[13]  Faisal M,Bahadar Khan S,Rahman M M,et al. Smart chemical sensor and active photo-catalyst for environmental pollutants[J]. Chemical Engineering Journal,2011,173:178-184.
[14]  Vanalakar S A,Pawar R C,Suryawanshi M P,et al. Low temperature aqueous chemical synthesis of CdS sensitized ZnO nanorods[J]. Materials Letters,2011,65:548-551.
[15]  Tak Y J,Hong S J,Lee J S,et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array[J]. Crystal Growth & Design,2009,9(6):2627-2632.
[16]  Bao N,Shen L,Takata T,et al. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light[J]. J. Phys. Chem.,2007,111(47):17527-17534.
[17]  Wu Y,Tamaki T,Volotinen T,et al. Enhanced photoresponce of inkjet-printed Zno thin films capped with CdS nanoparticles[J]. Journal of Physics Chemistry Letters,2010,1(1):89-92.
[18]  Xu F,Volkov V,Zhu Y,et al. Long electron-hole separation of ZnO-CdS core-shell quantum dots[J]. Journal of Physics Chemistry C,2009,113(45):19419-19423.
[19]  Wang X,Liu G,Chen Z G,et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chemical Communications,2009,23:3452-3454.
[20]  Zhai J L,Wang L L,Wang D J,et al. Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation[J]. ACS Applied Materials & Interfaces,2011,3:2253-2258.
[21]  Yao C Z,Wei B H,Meng L X,et al. Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core-shell nanorod arrays on fluorine-doped tin oxide[J]. Journal of Power Sources,2012,207:222-228.
[22]  Barpuzary D,Khan A,Vinothkumar N,et al. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation[J]. Journal of Physics Chemistry C,2012,116:150-156.
[23]  Qi X,She G,Liu Y,et al. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties[J]. Chemistry Communications,2012,48:242-244.
[24]  Kundu P,Deshpande P A,Madras G,et al. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation[J]. Journal of Materials Chemistry,2011,21:4209-4216.
[25]  Khanchandani S,Kundu S,Patra A,et al. Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods[J]. Journal of Physics Chemistry C,2012,116:23653-23662.
[26]  Tak Y,Hong S J,Lee J S,et al. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array[J]. Crystal Growth and Design,2009,19:2627-2632.
[27]  Yang P D,Yan H,Mao S,et al. Controlled growth of ZnO nanowires and their optical properties[J]. Advance Fuanctional Materials,2002,12:323-331. 3.0.CO;2-G target="_blank">
[28]  Fang F,Zhao D X,Li B H,et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification[J]. Appl. Phys. Lett.,2008,93(23):233115-1-3.
[29]  Wang X W,Liu G,Chen Z G,et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chem. Commun.,2009,66(23):3452-3454.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133