全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

完全阻塞气泡在T型不等宽微通道分岔口的破裂动力学

DOI: 10.16085/j.issn.1000-6613.2015.11.010, PP. 3886-3891

Keywords: 微通道,气液两相流,气泡,破裂,界面

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用高速摄像仪对T型不等宽微通道分岔口的气泡完全阻塞破裂动力学行为进行了研究。实验以N2作为分散相,含0.5%十二烷基硫酸钠(SDS)的蒸馏水与甘油混合液作为连续相。结果表明气泡完全阻塞破裂过程可以分为两个阶段挤压阶段和快速夹断阶段。挤压阶段又可分为快速挤压阶段和慢速挤压阶段,快速挤压阶段尚未发现普遍的变化规律,慢速挤压阶段量纲为1气泡颈部最小宽度与时间存在指数关系(1-wm/w0)∝t0.62。表观流速和液相黏度的增加可使颈部变细速率加快,而气泡初始长度对气泡颈部变化的影响可以忽略。在快速夹断阶段,量纲为1气泡颈部最小宽度与剩余时间存在指数关系wm/w0∝(T-t)0.32。

References

[1]  佟立军. 机械搅拌槽挡板的研究[J]. 有色设备,2005(3):17-19.
[2]  Baroud C N,Gallaire F,Dangla R. Dynamics of microfluidic droplets[J]. Lab Chip,2010,10(16):2032- 2045.
[3]  Sieben V J,Floquet C F A,Ogilvie I R G,et al. Microfluidic colourimetric chemical analysis system:Application to nitrite detection[J]. Anal. Methods,2010,2(5):484- 491.
[4]  Wu M H,Huang S B,Lee G B. Microfluidic cell culture systems for drug research[J]. Lab Chip,2010,10(8):939- 956.
[5]  褚良银,汪伟,巨晓洁,等. 微流控法构建微尺度相界面及制备新型功能材料研究进展[J]. 化工进展,2014,33(9):2229-2234
[6]  Li L,Ismagilov R F. Protein crystallization using microfluidic technologies based on valves,droplets,and slipchip[J]. Annu. Rev. Biophys.,2010,39:139-158.
[7]  Thorsen T,Roberts R W,Arnold F H,et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys. Rev. Lett.,2001,86(18):4163-4166.
[8]  党敏辉,任明月,陈光文. 微反应器内入口结构对Taylor气泡形成过程的影响[J]. 化工学报,2014,65(3):805-812. 浏览
[9]  Engl W,Roche M,Colin A,et al. Droplet traffic at a simple junction at low capillary numbers[J]. Phys. Rev. Lett.,2005,95(20):208304.
[10]  Wang X D,Zhu C Y,Fu T T,et al. Critical lengths for the transition of bubble breakup in microfluidic T-junctions[J]. Chem. Eng. Sci.,2014,111:244-254.
[11]  Fu T T,Ma Y G,Funfschilling D,et al. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chem. Eng. Sci.,2011,66(18):4184-4195.
[12]  Leshansky A M,Afkhami S,Jullien M C,et al. Obstructed breakup of slender drops in a microfluidic T junction[J]. Phys. Rev. Lett.,2012,108(26):264502.
[13]  Hoang D A,Portela L M,Kleijn C R,et al. Dynamics of droplet breakup in a T-junction[J]. J. Fluid. Mech.,2013,717:R4.
[14]  Wang X D,Zhu C Y,Fu,T T,et al. Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction[J]. AIChE J.,2015,61(3):1081-1091.
[15]  van Steijn V,Kleijn C R,Kreutzer M T. Flows around confined bubbles and their importance in triggering pinch-off[J]. Phys. Rev. Lett.,2009,103(21):214501.
[16]  Wu Y N,Fu T T,Zhu C Y,et al. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence:Feedback effect of bubble collision[J]. Microfluid Nanofluid,2012,13(5):723- 733.
[17]  de Menech M,Garstecki P,Jousse F,et al. Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. J. Fluid. Mech.,2008,595:141-161.
[18]  Jullien M C,Ching M J T M,Menetrier L,et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Phys. Fluids,2009,21(7):072001.
[19]  Lu Y T,Fu T T,Zhu C Y,et al. Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device[J]. Microfluid Nanofluid,2014,16(6):1047-1055.
[20]  van Hoeve W,Dollet B,Versluis M,et al. Microbubble formation and pinch-off scaling exponent in flow-focusing devices[J]. Phys. Fluids.,2011,23(9):092001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133