Adeeva V,Dehaan J W,Janchen J,et al. Acid sites in sulfated and metal-promoted zirconium dioxide catalysts[J]. Journal of Catalysis,1995,151(2):364-372.
[2]
Dong Z H,Lai X Y,Halpert J E,et al. Accurate control of multishelled ZnO hollow microspheres for dye-Sensitized solar cells with high effiiency[J]. Adv. Mater.,2012,24(8):1046-1049.
[3]
Jin H,Zhang H,Zhong H,et al. Nitrogen-doped carbon xerogel:A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science,2011,4(9):3389-3394.
[4]
Wang X,Lee J S,Zhu Q,et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials,2010,22(7):2178-2180.
[5]
Wang W Z,Wang G G,Wang X S,et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Adv. Mater.,2002,14(1):67-69. 3.0.CO;2-Z target="_blank">
[6]
Allendorf M D,Bauer C A,Bhakta R K,et al. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1330-1352.
[7]
Sun C Y,Qin C,Wang X L,et al. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle[J]. Dalton Trans.,2012,41(23):6906-6909.
[8]
Qi J,Zhao K,Li G D,et al. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation[J]. Nanoscale,2014,6(24):4072-4077.
[9]
Jin C,Yang Z B,Cao X C,et al. A novel bifunctional catalyst of Ba0.9Co0.5 Fe0.4Nb0.1O3-δ perovskite for lithium-air battery[J]. International Journal of Hydrogen Energy,2014,39:2526-2530.
[10]
Gole B,Bar A K,Mukherjee P S. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives[J]. Chem. Commun.,2011,47(44):12137-12139.
[11]
Qian F,Wang G M,Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode[J]. Nano Lett.,2010,10(11):4686-4691.
[12]
He C,Hu X. Anionic dye adsorption on chemically modified ordered mesoporous carbons[J]. Industrial & Engineering Chemistry Research,2011,50(24):14070-14083.
[13]
Banerjee R,Phan A,Wang B,et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943.
[14]
Garin F,Seyfried L,Girard P,et al. A skeletal rearrangement study of labeled butanes on a solid superacid catalyst :Sulfuric-acid treated zirconium-oxide[J]. Journal of Catalysis,1995,151(1):26-32.
[15]
Kalubarme R S,Park G E,Jung K H,et al. LaNixCo1-xO3-δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J]. Journal of The Electrochemical Society,2014,161:A880-A889.
[16]
Cravillon J,Munzer S,Lohmeier S J,et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chem. Mater.,2009,21(8):1410-1412.
[17]
Cao M H,Hu C W,Wang Y H. A controllable synthetic route to Cu,Cu2O,and CuO nanotubes and nanorods[J]. Chem. Commun.,2003,39(15):1884-1885.
[18]
Wang L L,Dou H M,Li F,et al. Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres[J]. Sensor. Actuat. B:Chem.,2013,183:467-473.
[19]
Nijkamp M G,Raaymakers J E,van Dillen A J,et al. Hydrogen storage using physisorption materials demands[J]. Appl. Phys. A.,2001,72(5):619-623.
J?rissen L. Bifunctional oxygen/air electrodes[J]. Journal of Power Sources,2006,155:23-32.
[22]
Hacialioglu S,Mengw F,Jin S. Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations[J]. Chem. Commun.,2012,48(8):1174-1176.
[23]
Wang J Y,Yang N L,Tang H J,et al. Accurate control of multishelled Co3O4 hollow microspheres as high performance anode materials in lithium-ion batteries[J]. Angew. Chem. Int. Ed.,2013,52(25):6417-6420.
[24]
Assfour B,Leoni S,Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. J. Phys. Chem. C.,2010,114(31):13381-13384.
[25]
Xiong H,Moyo M,Motchelaho M A,et al. Fischer-Tropsch synthesis:Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches[J]. Journal of Catalysis,2014,311:80-87.
[26]
Kitagawa S,Kondo M. Functional micropore chemistry of crystalline metal complex-assembled compounds[J]. Chem. Soc.,1998,71(8):1739-1753.
[27]
Ju H K,Lee J K,Lee G,et al. Fast and selective Cu2O nanorod growth into anodic alumina templates via electrodeposition[J]. Curr. Appl. Phys.,2012,12(1):60-63.
[28]
Zeng Y,Wang X,Wang H,et al. Multi-shelled titania hollow spheres fabricated by a hard template strategy:Enhanced photocatalytic activity[J]. Chem. Commun.,2010,46(24):4312-4314.
[29]
Cavka J H,Jakobsen S,Olsbye U,et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society,2008,130(42):13850-13851.
[30]
Yang Y,Jia L,Hou B,et al. The effect of nitrogen on the autoreduction of cobalt nanoparticles supported on nitrogen-doped ordered mesoporous carbon for the Fischer-Tropsch synthesis[J]. ChemCatChem,2014,6(1):319-327.
[31]
Wang L,Zhao X,Lu Y H,et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries[J]. Journal of the Electrochemical Society,2011,158:A1379-A1382.
[32]
Corma A,Garciía H,Llabres i Xamena F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem. Rev.,2010,110(8):4606-4655.
Haynes K M,Perry C M,Rivas M,et al. Templated electrodeposition and photocatalytic of cuprous oxide nanorod arrays[J]. ACS Appl. Mater. Interfaces,2015,7(1):830-837.
[35]
Wang X,Wu XL,Guo Y G,et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[J]. Adv. Funct. Mater.,2010,20(10):1680-1686.
[36]
Wang H L,Yang Y,Liang Y Y,et al. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst[J]. Energy & Environmental Science,2012,5:7931-7935.
[37]
Sheldon R A. Green solvents for sustainable organic synthesis:State of the art[J]. Green Chemistry,2005,7(5):267-278.
[38]
Yang Y,Jia L,Hou B,et al. The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for fischer-tropsch synthesis[J]. The Journal of Physical Chemistry C,2014,118(1):268-277.
[39]
Pang H,Gao F,Lu Q Y. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities[J]. Cryst. Eng. Comm,2010,12(2):406-412.
[40]
Neogi S,Sharma M K,Bharadwaj P K. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing Coordinatively unsaturated Zn(Ⅱ) centers[J]. Journal of Molecular Catalysis A:Chemical,2009,299(1-2):1-4.
[41]
Zhang G Q,Yu L,Wu H B,et al. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries[J]. Adv. Mater.,2012,24(34):4609-4613.
[42]
Drumright R E,Gruber P R,Henton D E. Polylactic acid technology[J]. Advanced Materials,2000,12(23):1841-1846. 3.0.CO;2-E target="_blank">
[43]
Dong S M,Chen X,Zhang X Y,et al. Nanostructured transition metal nitrides for energy storage and fuel cells[J]. Coordination Chemistry Reviews,2013,257:1946-1956.
[44]
Jin R Z,Bian Z,Li J Z,et al. ZIF-8 crystal coatings on a polyimide substrate and their catalytic behaviours for the Knoevenagel reaction[J]. Dalton Trans.,2013,42(11):3936-3940.
[45]
Wang X,Zhong Y T,Zhai T Y,et al. Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution:Synthesis,magnetic properties and their application in water treatment[J]. J. Mater. Chem.,2011,21(44):17680-17687.
[46]
Zhang K J,Zhang L X,Chen X,et al. Mesoporous cobalt molybdenum nitride:A highly active bifunctional electrocatalyst and its application in lithium-O2 aatteries[J]. The Journal of Physical Chemistry C,2013,117:858-865.
[47]
Zhu M Q,Srinivas D,Bhogeswararao S,et al. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide[J]. Catalysis Communications,2013,32:36-40.
[48]
He P,Wang Y G,Zhou H S. Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution[J]. Chemical Communications,2011,47:10701-10703.
[49]
Nguyen L T L,Le K K A,Phan N T S. A zeolite imidazolate framework ZIF-8 catalyst for Friedel-Crafts acylation[J]. Chinese Journal of Catalysis,2012,33(4):688-696.
[50]
de Clippel F,Dusselier M,van Rompaey R,et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. Journal of the American Chemical Society,2012,134(24):10089-10101.
[51]
Ma Z C,Wanga L M,Chu D Q,et al. Template-free synthesis of complicated double-wall Cu2O hollow spheres with enhanced visible photocatalytic activities[J]. RSC Adv.,2015,5(11):8223-8227.
[52]
Chizallet C,Lazare S,Bazer-Bachi D,et al. Catalysis of transesterification by a nonfunctionalized metal-organic framework:Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. J. Am. Chem. Soc.,2010,132(35):12365-12377.
[53]
Dong S M,Chen X,Zhang K J,et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries[J]. Chemical Communications,2011,47:11291-11293.
[54]
Li L,Collard X,Bertrand A,et al. Extra-small porous Sn-silicate nanoparticles as catalysts for the synthesis of lactates[J]. J. Catal.,2014,314(0):56-65.
[55]
Wu Z G,Zhong Y J,Li J T,et al. L-histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties[J]. J. Mater. Chem. A,2014,2(31):12361-12367.
[56]
Zakzeski J,Debczaka A,Bruijnincx P C A,et al. Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9[J]. Applied Catalysis A:General,2011,394 (1/2):79-85.
[57]
Zhang K J,Zhang L X,Chen X,et al. Molybdenum nitride/N-doped carbon nanospheres for lithium-O2 battery cathode electrocatalyst[J]. ACS Applied Materials & Interfaces,2013,5: 3677-3682.
[58]
Pescarmona P,Janssen K F,Stroobants C,et al. A high-throughput experimentation study of the synthesis of lactates with solid acid catalysts[J]. Top Catal.,2010,53(1-2):77-85.
Wu H B,Chen W. Copper nitride nanocubes:Size-controlled synthesis and application as cathode catalyst in alkaline fuel cells[J]. Journal of the American Chemical Society,2011,133:15236-15239.
[61]
Xu S M,Hessel C M,Ren H,et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energ. Environ. Sci.,2014,7(2):632-637.
[62]
Zhou D L,Chen D J,Zhang P P,et al. Facile synthesis of MnO2-Ag hollow microspheres with sheet-like subunits and their catalytic properties[J]. Cryst. Eng. Comm.,2014,16(5):863-869.
Sui Y M,Zeng Y,Zheng W T,et al. Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties[J]. Sens. Actuators B,2012,171-172:135-140.
[66]
Sumida K,Rogow D L,Mason J A,et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev.,2011,112(2):724-781.
[67]
Liu L,Deng Q F,Hou X X,et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry,2012,22(31):15540-15548.
[68]
Park K S,Ni Z,Cote A P,et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS,2006,103(27):10186-10191.
[69]
Ahmed M A. Surface characterization and catalytic activity of sulfated-hafnia promoted zirconia catalysts for n-butane isomerization[J]. Fuel Processing Technology,2011,92(5):1121-1128.
[70]
Hu P,Han N,Zhang X,et al. Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor[J]. J. Mater. Chem.,2011,21(37):14277-14284.
[71]
Li J R,Sculley J,Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev.,2011,112(2):869-932.
[72]
Wang B,Cote A P,Furukawa H,et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-212.
[73]
Xu Y Y,Jiao X L,Chen D R. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes[J]. J. Phys. Chem. C,2008,112(43):16769-16773.
[74]
Yue B,Ma Y,Tao H,et al. CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation[J]. Journal of Materials Chemistry,2008,18(15):1747-1750.
[75]
Cychosz K A,Ahmad R,Matzger A J. Liquid phase separations by crystalline microporous coordination polymers[J]. Chem. Sci.,2010,1(3):293-302.
[76]
Phan A,Doonan C J,Uribe-Romo F J,et al. Synthesis, structure,and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research,2010,43(1):58-67.
[77]
Lu G H,Qi L M,Yang J H,et al. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route[J]. Adv. Mater.,2005,17(21):2562-2567.
[78]
Han L J,Liu R J,Li C,et al. Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid[J]. J. Mater. Chem.,2012,22(33):17079-17085.
[79]
Zarkalis A S,Hsu C Y,Gates B C. Solid superacid catalysis-kinetics of butane isomerization catalyzed by a sulfated oxide containing iron,manganese,and zirconium[J]. Catalysis Letters,1994,29(1/2):235-239.
[80]
Liu S H,Wu J R. Nitrogen-doped ordered mesoporous carbons as electrocatalysts for methanol-tolerant oxygen reduction in acid solution[J]. International Journal of Hydrogen Energy,2011,36(1):87-93.
[81]
Assfour B,Leoni S,Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. J. Phys. Chem. C,2010,114(31):13381-13384.
Tan Y W,Xue X Y,Peng W,et al. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios[J]. Nano Lett.,2007,7(12):3723-3728.
Ma X M,Zhang X T,Yang L,et al. An unusual temperature gradient crystallization process:Facile synthesis of hierarchical ZnO porous hollow spheres with controllable shell numbers[J]. Cryst. Eng. Comm.,2014,16(34):7933-7941.
[86]
Li Xuebing,Nagaoka Katsutoshi,Simon Laurent J,et al. Mechanism of butane skeletal isomerization on sulfated zirconia[J]. Journal of Catalysis,2005,232(2):456-466.
[87]
Talapaneni S N,Mane G P,Mano A,et al. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores,band gaps and nitrogen content from a single aminoguanidine precursor[J]. ChemSusChem,2012,5(4):700-708.
[88]
Kurmoo M. Magnetic metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1353-1379.
[89]
Deng S Z,Tjoa W,Fan H M,et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor[J]. J. Am. Chem. Soc.,2012,134(10):4905-4917.
[90]
Yang L L,Yu L,Sun M,et al. Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate[J]. Catalysis Communications,2014,54:86-90.
[91]
Zhang L X,Sun Y X,Jia W B,et al. Multiple shell hollow CoFe2O4 spheres:Synthesis,formation mechanism and properties[J]. Ceram. Int.,2014,40(7):8997-9002.
[92]
Essayem N,Taarit Y Ben,Feche C,et al. Comparative study of n-pentane isomerization over solid acid catalysts,heteropolyacid,sulfated zirconia,and mordenite:Dependence on hydrogen and platinum addition[J]. Journal of Catalysis,2003,219(1):97-106.
[93]
Han X P,Hu Y X,Yang J G,et al. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries[J]. Chemical Communications,2014,50:1497-1499.
[94]
Zhang G Q,Lou X W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties[J]. Angew. Chem. Int. Ed.,2014,53(34):9041-9044.
[95]
Ren Y,Ma Z,Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol[J]. Cryst. Eng. Comm.,2012,14(8):2617-2620.
[96]
Biddinger E J,Von Deak D,Ozkan U S. Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts[J]. Topics in Catalysis,2009,52(11):1566-1574.
[97]
Nattaporn Lohitharn,Edgar Lotero,James G Goodwin Jr,et al. A comprehensive mechanistic pathway for n-butane isomerization on sulfated zirconia[J]. Journal of Catalysis,2006,241(2):328-341.
Sickafus K E,Hughes R. Spinel compounds:Structure and property relations[J]. Journal of the American Ceramic Society,1998,82:3279-3292.
[101]
Wu F,Myung Y,Banerjee P. Rayleigh instability driven nodular Cu2O nanowires via carbothermal reduction of CuO nanowires[J]. Cryst. Growth Des.,2015,15(4):1588-1595.
[102]
Morris W,Doonan C J,Furukawa H,et al. Crystals as molecules:Postsynthesis covalent functionalization of zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc.,2008,130(38):12626-12627.
[103]
Echizen Tsuneo,Suzuk Tetsuo,Kamiy Yuichi,et al. Mechanistic study on skeletal isomerization of n-butane using 1,4-13C2-n-butane on typical solid acids and their Pt-promoted bifunctional catalysts[J]. Journal of Molecular Catalysis A:Chemical,2004,209:145-153.
Wang Y P,Pan A Q,Zhu Q Y,et al. Facile synthesis of nanorod-assem bled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors[J]. J. Power Sources,2014,272:107-112.
[106]
Brun N,Wohlgemuth S A,Osiceanu P,et al. Original design of nitrogen-doped carbon aerogels from sustainable precursors:Application as metal-free oxygen reduction catalysts[J]. Green Chem.,2013,15(9):2514-2524.
[107]
Yoon M,Srirambalaji R,Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis[J]. Chem. Rev.,2011,112(2):1196-1231.
[108]
Zhao Y X,Wang W T,Huo Z Y,et al. Hierarchical branched Cu2O nanowires with enhanced photocatalyticactivity and stability for H2 production[J]. Nanoscale,2014,6(1):195-198.
[109]
Cho H Y,Kim J,Kim S N,et al. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous and Mesoporous Materials,2013,169:160-184.
[110]
Zhou L,Xu H Y,Zhang H W,et al. Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries[J]. Chem. Commun.,2013,49(77):8695-8697.
[111]
Johansson A C,Larsen J V,Verheijen M A,et al. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes[J]. Journal of Catalysis,2014,311:481-486.
[112]
Ravon U,Chaplais G,Chizallet C,et al. Investigation of acid centers in MIL-53(Al,Ga) for Br?nsted-type catalysis:Insitu FTIR and Abinitio molecular modeling[J]. ChemCatChem,2010,2(10):1235-1238.
[113]
Wang Q,Li H,Chen L Q,et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211-2214.
[114]
Seoane B,Zamaro J M,Telleza C,et al. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7,ZIF-8,ZIF-11 and ZIF-20)[J]. Cryst. Eng. Comm.,2012,14(9):3103-3107.
Sun X M,Li Y D. Colloidal carbon spheres and their core/shell structures with noble-Metal nanoparticles[J]. Angew. Chem. Int. Ed.,2004,43(5):597-601.
[118]
Wu Y Y,Livneh T,Zhang Y Z,et al. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays[J]. Nano Lett.,2004,4(12):2337-2342.
[119]
Zheng Ni,Richard I Mase. Rapid production of metal-organic frameworks via microwave assisted solvothermal synthesis[J]. J. Am. Chem. Soc.,2006,128(38):12394-12395.
[120]
Zhong J H,Li G R,Wang Z L,et al. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application[J]. Inorg. Chem.,2011,50(3):757-763.
[121]
Farrusseng D,Aguado S,Pinel C. Metal-organic frameworks:Opportunities for catalysis[J]. Angew. Chem. Int. Ed.,2009,48(41):7502-7513.
[122]
Ren H,Yu R B,Wang J Y,et al. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries[J]. Nano Lett.,2014,14(11):6679-6684.
[123]
Lu J Z,Yang L J,Xu B L,et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer-tropsch catalysts for lower olefins[J]. ACS Catalysis,2014,4(2):613-621.
Huang A S,Chen Y F,Wang N Y,et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation[J]. Chem. Commun.,2012,48(89):10981-10983.
[126]
Guan L,Pang H,Wang J J,et al. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors[J]. Chem. Commun.,2010,46(37):7022-7024.
[127]
Xi G C,Yan Y,Ma Q,et al. Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible light photocatalysis[J]. Chem. Eur. J.,2012,18(44):13949-13953.
[128]
Ma L,Abney C,Lin W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1248-1256.
[129]
Chen X,Deng D,Pan X,et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communications,2015,51(1):217-220.
[130]
Ferey G,Mellot-Draznieks C,Serre C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
[131]
Musselman K P,Mulholland G J,Robinson A P,et al. Low-temperature synthesis of large-area,free-standing nanorod arrays on ITO/glass and other conducting substrates[J]. Adv. Mater.,2008,20(23):4470-4475.
[132]
Chaudhuri R G,Paria S. Optical properties of double-shell hollow ZnS-Ag2S nanoparticles[J]. J. Phys. Chem. C,2013,117(44):23385-23390.
[133]
Xiong H,Motchelaho M A,Moyo M,et al. Fischer-Tropsch synthesis:Iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping[J]. Applied Catalysis A:General,2014,482:377-386.
[134]
Ho J Y,Huang M H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity[J]. J. Phys. Chem. C,2009,113(32):14159-14164.
[135]
Gascon J,Aktay U,Hernandez-Alonso M D,et al. Amino-based metal-organic frameworks as stable,highly active basic catalysts[J]. Journal of Catalysis,2009,261(1):75-87.
[136]
Clary J J,Feron V J,van Velthuijsen J A. Safety assessment of lactate esters[J]. Regulatory Toxicology and Pharmacology,1998,27(2):88-97.
[137]
Dewa T,Saiki T,Aoyama Y. Enolization and aldol reactions of ketone with a La3+-immobilized organic solid in water. A microporous enolase mimic[J]. J. Am. Chem. Soc.,2001,123(3):502-503.
[138]
Fu T,Li Z. Highly dispersed cobalt on N-doped carbon nanotubes with improved Fischer-Tropsch synthesis activity[J]. Catalysis Communications,2014,47:54-57.
[139]
Madhavan Nampoothiri K,Nair N R,John R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology,2010,101(22):8493-8501.
[140]
Llabres i Xamena F X,Casanova O,Galiasso Tailleur R,et al. Metal organic frameworks (MOFs) as catalysts:A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation[J]. J. Catal.,2008,255(2):220-227.
[141]
Datta R,Henry M. Lactic acid:Recent advances in products,processes and technologies —A review[J]. Journal of Chemical Technology & Biotechnology,2006,81(7):1119-1129.
[142]
Liu H L,Liu Y L,Li Y W,et al.Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. J. Phys. Chem. C.,2010,114(31):13362-13369.
[143]
Wasewar K L,Yawalkar A A,Moulijn J A,et al. Fermentation of glucose to lactic acid coupled with reactive extraction:A review[J]. Industrial & Engineering Chemistry Research,2004,43(19):5969-5982.
[144]
Sun B,Huang X D,Chen S Q,et al. Hierarchical macroporous/mesoporous NiCo2O4 nanosheets as cathode catalysts for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A,2014,2:1253-1259.
[145]
Opelt S,Turk S,Dietzsch E,et al.Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst[J]. Catal. Commun.,2008,9(6):1286-1290.
[146]
Li L,Stroobants C,Lin K,et al. Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts[J]. Green Chemistry,2011,13(5):1175-1181.
[147]
Li J F,Wang J Z,Liang X,et al. Hollow MnCo2O4 submicrospheres with multilevel interiors:From mesoporous spheres to yolk-in-double-shell structures[J]. ACS Appl. Mater. Inter.,2014,6(1):24-30.
[148]
Llabres i Xamena F X,Abad A,Corma A,et al. MOFs as catalysts:Activity,reusability and shape-selectivity of a Pd-containing MOF[J]. J. Catal.,2007,250(2):294-298.
[149]
Pescarmona P P,Janssen K P F,Delaet C,et al. Zeolite-catalysed conversion of C3 sugars to alkyl lactates[J]. Green Chemistry,2010,12(6):1083-1089.
[150]
Wang W Z,Tu Y,Zhang P C,et al. Surfactant-assisted synthesis of double-wall Cu2O hollow spheres[J]. Cryst. Eng. Comm.,2011,13(6):1838-1842.
[151]
Ravon U,Savonnet M,Aguado S,et al. Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects[J]. Microporous Mesoporous Materials,2010,129(3):319-29.
[152]
Prakash J,Tryk D,Aldred W,et al. Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes[J]. Journal of Applied Electrochemistry,1999,29:1463-1469.
[153]
Zhang Y,Zhou G W,Sun B,et al. A cationic-cationic co-surfactant templating route for synthesizing well-defined multilamellar vesicular silica with an adjustable number of layers[J]. Chem. Commun.,2014,50(22):2907-2909.
[154]
Oh S H,Black R,Pomerantseva E,et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nature Chemistry,2012,4:1004-1010.
[155]
Tran U P N,Le K K A,Phan N T S. Expanding applications of metal-organic frameworks:Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. ACS Catal.,2011,1(2):120-127.
[156]
Zhou G W,Chen Y J,Yang J H,et al. From cylindrical-channel mesoporous silica to vesicle-like silica with welldefined multilamella shells and large inter-shell mesopores[J]. J. Mater. Chem.,2007,17(27):2839-2844.
[157]
Garibay S J,Cohen S M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology[J]. Chem. Comm.,2010,46(41):7700-7702.
[158]
Jiang H L,Liu B,Akita T,Haruta M,et al. Au@ZIF-8:CO oxidation over gold nanoparticles deposited to metal-organic framework[J]. J. Am. Chem. Soc.,2009,31(32):11302-11303.
[159]
Yu D S,Nagelli E,Du F,et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. The Journal of Physical Chemistry Letters,2010,1:2165-2173.
[160]
Lai X Y,Halpert J E,Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications:From simple to complex systems[J]. Energ. Environ. Sci.,2012,5(2):5604-5618.
[161]
Schaate A,Roy P,Godt A,et al. Modulated synthesis of Zr-based metal-organic frameworks:From nano to single crystals[J]. Chemistry—A:European Journal,2011,17(24):6643-6651. target="_blank">
[162]
Li P Z,Aranishi K,Xu Q. ZIF-8 immobilized nickel nanoparticles:Highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Chem. Commun.,2012,48(26):3173-3175.
[163]
Tran C,Yang X Q,Qu D. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity[J]. Journal of Power Sources,2010,195:2057-2063.
[164]
Han L Y,Islam A,Chen H,et al. High-efficiency dye-sensitized solar cell with a novel co-adsorbent[J]. Energ. Environ. Sci.,2012,5(3):6057-6060.
[165]
Zhan W W,Kuang Q,Zhou J Z,et al. Semiconductor @metal-organic framework core-shell heterostructures:A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. J. Am. Chem. Soc.,2013,135(5):1926-1933.
[166]
Lippens B C,de Boer J H. Studies on pore systems in catalysts:V. The tmethod[J]. J . Catal.,1965,4(3):319-323.
[167]
Ke G J,Chen H Y,Su C Y,et al. Template-free solvothermal fabrication of hierarchical TiO2 hollow microspheres for efficient dye-sensitized solar cells[J]. J. Mater. Chem. A,2013,1(42):13274-13282.
[168]
Lu G,Li S Z,Guo Z,et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry,2012,4(4):310-316.
[169]
Vermoortele F,Bueken B,Le Bars G,et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks:The unique case of UiO-66(Zr)[J]. Journal of the American Chemical Society,2013,135(31):11465-11468.
[170]
Sun C Y,Qin C,Wang X L,et al. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle[J]. Dalton Trans.,2012,41(23):6906-6909.
[171]
Zhang Y N,Zhang H M,Li J,et al. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery[J]. Journal of Power Sources,2013,240:390-396.
[172]
Wu X,Lu G Q,Wang L Z. Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application[J]. Energ. Environ. Sci.,2011,4(9):3565-3572.
[173]
Vermoortele F,Vandichel M,vandeVoorde B,et al. Electronic effects of linker substitution on lewis acid catalysis with metal-organic frameworks[J]. Angewandte Chemie International Edition,2012,51(20):4887-4890.
[174]
Fan Z J,Yan J,Wei T,et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Adv. Funct. Mater.,2011 ,21(12):2366-2375.
[175]
Shi Q,Chen Z F,Song Z W,et al. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors[J]. Angew. Chem. Int. Ed.,2011,50(3):672-675.
[176]
Tan P,Shyy W,Wei Z H,et al. A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries[J]. Electrochimica Acta,2014,147:1-8.
[177]
Wei W F,Cui X W,Chen W X,et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chem. Soc. Rev.,2011,40(3):1697-1721.
[178]
Kandiah M,Nilsen M H,Usseglio S,et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chem. Mater.,2010,22(24):6632-6640.