Dong Z H,Lai X Y,Halpert J E,et al. Accurate control of multishelled ZnO hollow microspheres for dye-Sensitized solar cells with high effiiency[J]. Adv. Mater.,2012,24(8):1046-1049.
[2]
Jin H,Zhang H,Zhong H,et al. Nitrogen-doped carbon xerogel:A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science,2011,4(9):3389-3394.
[3]
Cychosz K A,Ahmad R,Matzger A J. Liquid phase separations by crystalline microporous coordination polymers[J]. Chem. Sci.,2010,1(3):293-302.
[4]
Kurmoo M. Magnetic metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1353-1379.
[5]
Deng S Z,Tjoa W,Fan H M,et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor[J]. J. Am. Chem. Soc.,2012,134(10):4905-4917.
[6]
Yang L L,Yu L,Sun M,et al. Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate[J]. Catalysis Communications,2014,54:86-90.
[7]
Zhang L X,Sun Y X,Jia W B,et al. Multiple shell hollow CoFe2O4 spheres:Synthesis,formation mechanism and properties[J]. Ceram. Int.,2014,40(7):8997-9002.
[8]
Essayem N,Taarit Y Ben,Feche C,et al. Comparative study of n-pentane isomerization over solid acid catalysts,heteropolyacid,sulfated zirconia,and mordenite:Dependence on hydrogen and platinum addition[J]. Journal of Catalysis,2003,219(1):97-106.
[9]
Han X P,Hu Y X,Yang J G,et al. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries[J]. Chemical Communications,2014,50:1497-1499.
[10]
Wang X,Lee J S,Zhu Q,et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials,2010,22(7):2178-2180.
[11]
Wang W Z,Wang G G,Wang X S,et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Adv. Mater.,2002,14(1):67-69. 3.0.CO;2-Z target="_blank">
[12]
Allendorf M D,Bauer C A,Bhakta R K,et al. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1330-1352.
[13]
Sun C Y,Qin C,Wang X L,et al. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle[J]. Dalton Trans.,2012,41(23):6906-6909.
[14]
Qi J,Zhao K,Li G D,et al. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation[J]. Nanoscale,2014,6(24):4072-4077.
[15]
Jin C,Yang Z B,Cao X C,et al. A novel bifunctional catalyst of Ba0.9Co0.5 Fe0.4Nb0.1O3-δ perovskite for lithium-air battery[J]. International Journal of Hydrogen Energy,2014,39:2526-2530.
[16]
Gole B,Bar A K,Mukherjee P S. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives[J]. Chem. Commun.,2011,47(44):12137-12139.
[17]
Qian F,Wang G M,Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode[J]. Nano Lett.,2010,10(11):4686-4691.
[18]
He C,Hu X. Anionic dye adsorption on chemically modified ordered mesoporous carbons[J]. Industrial & Engineering Chemistry Research,2011,50(24):14070-14083.
[19]
Banerjee R,Phan A,Wang B,et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943.
[20]
Garin F,Seyfried L,Girard P,et al. A skeletal rearrangement study of labeled butanes on a solid superacid catalyst :Sulfuric-acid treated zirconium-oxide[J]. Journal of Catalysis,1995,151(1):26-32.
[21]
Kalubarme R S,Park G E,Jung K H,et al. LaNixCo1-xO3-δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J]. Journal of The Electrochemical Society,2014,161:A880-A889.
[22]
Cravillon J,Munzer S,Lohmeier S J,et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chem. Mater.,2009,21(8):1410-1412.
[23]
Zhang G Q,Lou X W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties[J]. Angew. Chem. Int. Ed.,2014,53(34):9041-9044.
[24]
Ren Y,Ma Z,Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol[J]. Cryst. Eng. Comm.,2012,14(8):2617-2620.
[25]
Biddinger E J,Von Deak D,Ozkan U S. Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts[J]. Topics in Catalysis,2009,52(11):1566-1574.
[26]
Nattaporn Lohitharn,Edgar Lotero,James G Goodwin Jr,et al. A comprehensive mechanistic pathway for n-butane isomerization on sulfated zirconia[J]. Journal of Catalysis,2006,241(2):328-341.
Sickafus K E,Hughes R. Spinel compounds:Structure and property relations[J]. Journal of the American Ceramic Society,1998,82:3279-3292.
[30]
Wu F,Myung Y,Banerjee P. Rayleigh instability driven nodular Cu2O nanowires via carbothermal reduction of CuO nanowires[J]. Cryst. Growth Des.,2015,15(4):1588-1595.
[31]
Morris W,Doonan C J,Furukawa H,et al. Crystals as molecules:Postsynthesis covalent functionalization of zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc.,2008,130(38):12626-12627.
[32]
Echizen Tsuneo,Suzuk Tetsuo,Kamiy Yuichi,et al. Mechanistic study on skeletal isomerization of n-butane using 1,4-13C2-n-butane on typical solid acids and their Pt-promoted bifunctional catalysts[J]. Journal of Molecular Catalysis A:Chemical,2004,209:145-153.
Wang Y P,Pan A Q,Zhu Q Y,et al. Facile synthesis of nanorod-assem bled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors[J]. J. Power Sources,2014,272:107-112.
[35]
Brun N,Wohlgemuth S A,Osiceanu P,et al. Original design of nitrogen-doped carbon aerogels from sustainable precursors:Application as metal-free oxygen reduction catalysts[J]. Green Chem.,2013,15(9):2514-2524.
[36]
Yoon M,Srirambalaji R,Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis[J]. Chem. Rev.,2011,112(2):1196-1231.
[37]
Zhao Y X,Wang W T,Huo Z Y,et al. Hierarchical branched Cu2O nanowires with enhanced photocatalyticactivity and stability for H2 production[J]. Nanoscale,2014,6(1):195-198.
[38]
Cho H Y,Kim J,Kim S N,et al. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous and Mesoporous Materials,2013,169:160-184.
[39]
Zhou L,Xu H Y,Zhang H W,et al. Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high-performance anode materials for lithium ion batteries[J]. Chem. Commun.,2013,49(77):8695-8697.
[40]
Johansson A C,Larsen J V,Verheijen M A,et al. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes[J]. Journal of Catalysis,2014,311:481-486.
[41]
Ravon U,Chaplais G,Chizallet C,et al. Investigation of acid centers in MIL-53(Al,Ga) for Br?nsted-type catalysis:Insitu FTIR and Abinitio molecular modeling[J]. ChemCatChem,2010,2(10):1235-1238.
[42]
Wang Q,Li H,Chen L Q,et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211-2214.
[43]
Seoane B,Zamaro J M,Telleza C,et al. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7,ZIF-8,ZIF-11 and ZIF-20)[J]. Cryst. Eng. Comm.,2012,14(9):3103-3107.
Sun X M,Li Y D. Colloidal carbon spheres and their core/shell structures with noble-Metal nanoparticles[J]. Angew. Chem. Int. Ed.,2004,43(5):597-601.
[47]
Wu Y Y,Livneh T,Zhang Y Z,et al. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays[J]. Nano Lett.,2004,4(12):2337-2342.
[48]
Zheng Ni,Richard I Mase. Rapid production of metal-organic frameworks via microwave assisted solvothermal synthesis[J]. J. Am. Chem. Soc.,2006,128(38):12394-12395.
[49]
Cao M H,Hu C W,Wang Y H. A controllable synthetic route to Cu,Cu2O,and CuO nanotubes and nanorods[J]. Chem. Commun.,2003,39(15):1884-1885.
[50]
Wang L L,Dou H M,Li F,et al. Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres[J]. Sensor. Actuat. B:Chem.,2013,183:467-473.
[51]
Nijkamp M G,Raaymakers J E,van Dillen A J,et al. Hydrogen storage using physisorption materials demands[J]. Appl. Phys. A.,2001,72(5):619-623.
J?rissen L. Bifunctional oxygen/air electrodes[J]. Journal of Power Sources,2006,155:23-32.
[54]
Hacialioglu S,Mengw F,Jin S. Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations[J]. Chem. Commun.,2012,48(8):1174-1176.
[55]
Wang J Y,Yang N L,Tang H J,et al. Accurate control of multishelled Co3O4 hollow microspheres as high performance anode materials in lithium-ion batteries[J]. Angew. Chem. Int. Ed.,2013,52(25):6417-6420.
[56]
Assfour B,Leoni S,Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. J. Phys. Chem. C.,2010,114(31):13381-13384.
[57]
Zhong J H,Li G R,Wang Z L,et al. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application[J]. Inorg. Chem.,2011,50(3):757-763.
[58]
Farrusseng D,Aguado S,Pinel C. Metal-organic frameworks:Opportunities for catalysis[J]. Angew. Chem. Int. Ed.,2009,48(41):7502-7513.
[59]
Ren H,Yu R B,Wang J Y,et al. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries[J]. Nano Lett.,2014,14(11):6679-6684.
[60]
Lu J Z,Yang L J,Xu B L,et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron fischer-tropsch catalysts for lower olefins[J]. ACS Catalysis,2014,4(2):613-621.
Huang A S,Chen Y F,Wang N Y,et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation[J]. Chem. Commun.,2012,48(89):10981-10983.
[63]
Guan L,Pang H,Wang J J,et al. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors[J]. Chem. Commun.,2010,46(37):7022-7024.
[64]
Xi G C,Yan Y,Ma Q,et al. Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible light photocatalysis[J]. Chem. Eur. J.,2012,18(44):13949-13953.
[65]
Ma L,Abney C,Lin W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1248-1256.
[66]
Chen X,Deng D,Pan X,et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communications,2015,51(1):217-220.
[67]
Ferey G,Mellot-Draznieks C,Serre C,et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
[68]
Musselman K P,Mulholland G J,Robinson A P,et al. Low-temperature synthesis of large-area,free-standing nanorod arrays on ITO/glass and other conducting substrates[J]. Adv. Mater.,2008,20(23):4470-4475.
[69]
Chaudhuri R G,Paria S. Optical properties of double-shell hollow ZnS-Ag2S nanoparticles[J]. J. Phys. Chem. C,2013,117(44):23385-23390.
[70]
Pang H,Gao F,Lu Q Y. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities[J]. Cryst. Eng. Comm,2010,12(2):406-412.
[71]
Neogi S,Sharma M K,Bharadwaj P K. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing Coordinatively unsaturated Zn(Ⅱ) centers[J]. Journal of Molecular Catalysis A:Chemical,2009,299(1-2):1-4.
[72]
Zhang G Q,Yu L,Wu H B,et al. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries[J]. Adv. Mater.,2012,24(34):4609-4613.
[73]
Drumright R E,Gruber P R,Henton D E. Polylactic acid technology[J]. Advanced Materials,2000,12(23):1841-1846. 3.0.CO;2-E target="_blank">
[74]
Xiong H,Motchelaho M A,Moyo M,et al. Fischer-Tropsch synthesis:Iron-based catalysts supported on nitrogen-doped carbon nanotubes synthesized by post-doping[J]. Applied Catalysis A:General,2014,482:377-386.
[75]
Ho J Y,Huang M H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity[J]. J. Phys. Chem. C,2009,113(32):14159-14164.
[76]
Gascon J,Aktay U,Hernandez-Alonso M D,et al. Amino-based metal-organic frameworks as stable,highly active basic catalysts[J]. Journal of Catalysis,2009,261(1):75-87.
[77]
Phan A,Doonan C J,Uribe-Romo F J,et al. Synthesis, structure,and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research,2010,43(1):58-67.
[78]
Lu G H,Qi L M,Yang J H,et al. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route[J]. Adv. Mater.,2005,17(21):2562-2567.
[79]
Han L J,Liu R J,Li C,et al. Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid[J]. J. Mater. Chem.,2012,22(33):17079-17085.
[80]
Zarkalis A S,Hsu C Y,Gates B C. Solid superacid catalysis-kinetics of butane isomerization catalyzed by a sulfated oxide containing iron,manganese,and zirconium[J]. Catalysis Letters,1994,29(1/2):235-239.
[81]
Liu S H,Wu J R. Nitrogen-doped ordered mesoporous carbons as electrocatalysts for methanol-tolerant oxygen reduction in acid solution[J]. International Journal of Hydrogen Energy,2011,36(1):87-93.
[82]
Assfour B,Leoni S,Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. J. Phys. Chem. C,2010,114(31):13381-13384.
Tan Y W,Xue X Y,Peng W,et al. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios[J]. Nano Lett.,2007,7(12):3723-3728.
Ma X M,Zhang X T,Yang L,et al. An unusual temperature gradient crystallization process:Facile synthesis of hierarchical ZnO porous hollow spheres with controllable shell numbers[J]. Cryst. Eng. Comm.,2014,16(34):7933-7941.
[87]
Li Xuebing,Nagaoka Katsutoshi,Simon Laurent J,et al. Mechanism of butane skeletal isomerization on sulfated zirconia[J]. Journal of Catalysis,2005,232(2):456-466.
[88]
Talapaneni S N,Mane G P,Mano A,et al. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores,band gaps and nitrogen content from a single aminoguanidine precursor[J]. ChemSusChem,2012,5(4):700-708.
[89]
Xiong H,Moyo M,Motchelaho M A,et al. Fischer-Tropsch synthesis:Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches[J]. Journal of Catalysis,2014,311:80-87.
[90]
Kitagawa S,Kondo M. Functional micropore chemistry of crystalline metal complex-assembled compounds[J]. Chem. Soc.,1998,71(8):1739-1753.
[91]
Ju H K,Lee J K,Lee G,et al. Fast and selective Cu2O nanorod growth into anodic alumina templates via electrodeposition[J]. Curr. Appl. Phys.,2012,12(1):60-63.
[92]
Zeng Y,Wang X,Wang H,et al. Multi-shelled titania hollow spheres fabricated by a hard template strategy:Enhanced photocatalytic activity[J]. Chem. Commun.,2010,46(24):4312-4314.
[93]
Cavka J H,Jakobsen S,Olsbye U,et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society,2008,130(42):13850-13851.
[94]
Yang Y,Jia L,Hou B,et al. The effect of nitrogen on the autoreduction of cobalt nanoparticles supported on nitrogen-doped ordered mesoporous carbon for the Fischer-Tropsch synthesis[J]. ChemCatChem,2014,6(1):319-327.
[95]
Wang L,Zhao X,Lu Y H,et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries[J]. Journal of the Electrochemical Society,2011,158:A1379-A1382.
[96]
Corma A,Garciía H,Llabres i Xamena F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem. Rev.,2010,110(8):4606-4655.
Haynes K M,Perry C M,Rivas M,et al. Templated electrodeposition and photocatalytic of cuprous oxide nanorod arrays[J]. ACS Appl. Mater. Interfaces,2015,7(1):830-837.
[99]
Wang X,Wu XL,Guo Y G,et al. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres[J]. Adv. Funct. Mater.,2010,20(10):1680-1686.
[100]
Wang H L,Yang Y,Liang Y Y,et al. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst[J]. Energy & Environmental Science,2012,5:7931-7935.
[101]
Sheldon R A. Green solvents for sustainable organic synthesis:State of the art[J]. Green Chemistry,2005,7(5):267-278.
[102]
Yang Y,Jia L,Hou B,et al. The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for fischer-tropsch synthesis[J]. The Journal of Physical Chemistry C,2014,118(1):268-277.
[103]
Zhou D L,Chen D J,Zhang P P,et al. Facile synthesis of MnO2-Ag hollow microspheres with sheet-like subunits and their catalytic properties[J]. Cryst. Eng. Comm.,2014,16(5):863-869.
Sui Y M,Zeng Y,Zheng W T,et al. Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties[J]. Sens. Actuators B,2012,171-172:135-140.
[107]
Sumida K,Rogow D L,Mason J A,et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev.,2011,112(2):724-781.
[108]
Liu L,Deng Q F,Hou X X,et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry,2012,22(31):15540-15548.
[109]
Park K S,Ni Z,Cote A P,et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS,2006,103(27):10186-10191.
[110]
Ahmed M A. Surface characterization and catalytic activity of sulfated-hafnia promoted zirconia catalysts for n-butane isomerization[J]. Fuel Processing Technology,2011,92(5):1121-1128.
[111]
Hu P,Han N,Zhang X,et al. Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor[J]. J. Mater. Chem.,2011,21(37):14277-14284.
[112]
Li J R,Sculley J,Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev.,2011,112(2):869-932.
[113]
Wang B,Cote A P,Furukawa H,et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-212.
[114]
Xu Y Y,Jiao X L,Chen D R. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes[J]. J. Phys. Chem. C,2008,112(43):16769-16773.
[115]
Yue B,Ma Y,Tao H,et al. CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation[J]. Journal of Materials Chemistry,2008,18(15):1747-1750.
[116]
Adeeva V,Dehaan J W,Janchen J,et al. Acid sites in sulfated and metal-promoted zirconium dioxide catalysts[J]. Journal of Catalysis,1995,151(2):364-372.