全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

天然气水合物沉积层渗流特性的模拟

DOI: 10.16085/j.issn.1000-6613.2015.06.012, PP. 1576-1581

Keywords: 天然气水合物,孔隙网络模型,绝对渗透率,相对渗透率

Full-Text   Cite this paper   Add to My Lib

Abstract:

天然气水合物开采过程中水合物饱和度的变化会引起储层渗透率的相应变化,对开采过程造成影响。为研究天然气水合物对多孔介质渗流特性的影响,本文基于孔隙网络模型模拟研究了水合物生成于壁面与中心两种方式下,多孔介质渗流特性变化,并与相关模型进行比较。结果表明,水合物生成于中心时绝对渗透率小于生成于壁面时;水合物饱和度相同时多孔介质孔径越大,渗透率越大;水合物生成于中心时两相相对渗透率等渗点小于生成于壁面时;当水合物饱和度变化时两相相对渗透率几乎不变。说明了储层渗透率与水合物饱和度之间有相对应的关系。

References

[1]  Sloan E D, Koh A H. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton, FL:CRC Press, Taylor & Francis Group, 2008.
[2]  Yoshihiro Konno, Yusuke Jin, Takashi Uchiumi, et al. Multiple-pressure-tapped core holder combined with X-ray computed Tomography scanning for gas-water permeability measurements of methane hydrate-bearing sediments[J]. Review of Scientific Instruments, 2013, 84(6):064501-5.
[3]  Anjani Kumar, Brij Maini, Bishnoi P R, et al. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media[J]. Journal of Petroleum Science and Engineering, 2010, 70:114-122.
[4]  Andrew Johnson, Shirish Patil, Abhijit Dandekar. Experimental investigation of gas-water relative permeability for gas-hydrate- bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2):419-426.
[5]  Ruan Xuke, Song Yongchen, Liang Haifeng, et al. Modeling the effect of permeability on methane gas production from hydrates in porous media[J]. Applied Mechanics and Materials, 2010, 29(32):1762-1767.
[6]  Liang Haifeng, Song Yongchen, Liu Yu, et al. Study of the permeability characteristics of porous media with methane hydrate by pore network model[J]. Journal of Natural Gas Chemistry, 2010, 19(3):255-260.
[7]  Li Bo, Li Xiaosen, Li Gang, et al. Measurements of water permeability in unconsolidated porous media with methane hydrate formation[J]. Energies, 2013, 6:3622-3636.
[8]  宋永臣, 黄兴, 刘瑜, 等. 含甲烷水合物多孔介质渗透性的实验研究[J]. 热科学与技术, 2010, 9(1):51-57.
[9]  Simpanogiannis I N, Lichtner P C. Pore network study of methane clathrate hydrate dissociation[J]. Transactions, American Geophysical Union, 2003(1):46-84.
[10]  Sun X, Nanchary N, Mohanty K K. 1-D modeling of hydrate depressurization in porous media[J]. Transport in Porous Media, 2005, 58(3):315-338.
[11]  Ertkin T, Abou-Kassem J H, King G R. Basic Applied Reservoir Simulation[M]. Richardson:Society of Petroleum Engineering, 2001.
[12]  Tsimpanogiannis I N, Lichtner P C. Role of critical gas saturation in methane production from hydrate dissociation at the pore-network scale[C]//SPE Annual Technical Conference and Exhibition, Houston, TX, 2004.
[13]  Kang Q, Tsimpanogiannis I N, Zhang D, et al. Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments[J]. Fuel Process Technology, 2005, 84(14-15):1647-1665.
[14]  Tsimpanogiannis I N, Lichtner P C. Pore-network study of methane hydrate dissociation[J]. Physical Review E, 2007, 74(5):1-13.
[15]  Patzek T W, Silin D B. Shape factor and hydraulic conductance in noncircular capillaries Ⅰ:One-phase creeping flow[J]. Journal of Colloid and Interface Science, 2001, 236(2):295-304.
[16]  Hubbert M K. Darcy's law and the field equations of flow of underground fluids[J]. Trans AIME, 1956, 207:222-239.
[17]  Kleinberg L, Brewer G, Yesinowski J P. Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysics Research, 2003, 108(B4):2508-2577.
[18]  Masuda Y S, Naganawa S, Sato K. Numerical calculation of gas hydrate production performance from reservoirs containing natural gas hydrates[C]//SPE Asia Pacific Oil and Gas Conference, Kuala Lumpur, Malaysia, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133