全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

污水处理厂中四环素类抗生素残留及其抗性基因污染特征研究进展

DOI: 10.16085/j.issn.1000-6613.2015.06.044, PP. 1779-1785

Keywords: 污水处理厂,四环素类抗生素,四环素抗性基因,污染特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

四环素类抗生素以其突出的抗菌性能和较低的副作用而被广泛用于细菌感染疾病的治疗和控制,污水处理系统作为环境中四环素类抗生素及其抗性基因的一个重要污染点源,已引起广泛关注。尽管如此,目前关于四环素类抗生素在污水处理过程中的降解行为及影响因子,及其对降解微生物抗药性的选择性效应方面的研究还较少。在分析总结国内外四环素类抗生素污染现状基础上,对污水处理过程中四环素类抗生素的去除行为及影响因素等进行分析,探讨了其抗性基因在污水处理过程中的污染特征,同时分析了四环素类抗生素对其抗性基因的诱导、演变和传播的影响,并对今后的研究发展方向进行了展望,以期为从污水处理系统达到控制和去除四环素类抗生素及其抗性基因提供方向和依据。

References

[1]  Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science and Technology, 2006, 40(23):7445-7450.
[2]  罗玉, 黄斌, 金玉, 等. 污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9):2471-2477.
[3]  Gao P, Ding Y J, Li H, et al. Occurrence of pharmaceuticals in a municipal wastewater treatment plant:Mass balance and removal processes[J]. Chemosphere, 2012, 88(1):17-24.
[4]  Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421:173-183.
[5]  Food and Drug Administration. FDA annual report on antimicrobials sold or distributed for food-producing animals in 2011[R]. Rockville, MD:The US Food and Drug Administration, 2011.
[6]  Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate an effects of veterinary antibiotics(VAs) in the environment[J]. Chemosphere, 2006, 65(5):725-759.
[7]  Hu J Y, Shi J C, Chang H, et al. Phenotyping and genotyping of antibiotic-resistant Escherichia coli isolated from a natural river basin[J]. Environmental Toxicology and Chemistry, 2008, 42(9):3415-3420.
[8]  安清聪, 张曦, 陈克嶙. 动物组织中四环素类抗生素残留的ELISA检测研究——土霉素抗体的制备[J]. 畜牧与兽医, 2004, 36(9):8-10.
[9]  Migliore L, Brambilla G, Casoria P. Effects of sulphadimethoxine on barley in laboratory terrestrial models[J]. Agriculture Ecosystems and Environment, 1996, 60:121-128.
[10]  De Liguoro M, Cibin V, Capolongo F, et al. Use of oxytetracycline and tylosin in intensive calf farming:Evaluation of transfer to manure and soil[J]. Chemosphere, 2003, 52(1):203-212.
[11]  陈建发, 林诚, 刘福权, 等. 臭氧预处理+絮凝沉淀+BAF组合工艺在二级生化处理出水深度处理的应用[J]. 化工进展, 2014, 33(6):1601-1606.
[12]  Kim S, Jensen J N, Aga D S, et al. Tetracycline as a selector for resistant bacteria in activated sludge[J]. Chemosphere, 2007, 66(9):1643-1651.
[13]  Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2):295-302.
[14]  那广水, 陈彤, 张月梅, 等. 中国北方地区水体中四环素族抗生素残留现状分析[J]. 中国环境监测, 2009, 25(6):78-80.
[15]  邵一如, 席北斗, 曹金玲, 等. 抗生素在城市污水处理系统中的分布及去除[J]. 环境科学与技术, 2013, 36(7):85-92.
[16]  周启星, 罗义, 王美娥. 抗生素的环境残留, 生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3):243-251.
[17]  高品, 王宇晖, 刘振鸿, 等. 水中抗生素药物的迁移分布特征研究进展[J]. 环境科学与技术, 2013, 36(7):58-63.
[18]  李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8):2300-2308.
[19]  Matos M, Pereira M A, Parpot P, et al. Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms[J]. Chemosphere, 2014, 117:295-302.
[20]  Dan A, Yang Y, Dai Y N, et al. Removal of antibiotics from sewage plant effluent by a natural biological aerated filter and the influencing factors[J]. Ecological Science, 2012, 31(3):289-294.
[21]  Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1):395-403.
[22]  Drillia P, Dokianakis S N, Fountoulakis M S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process:The example of the antibiotic sulfamethoxazole[J]. Journal of Hazardous Materials, 2005, 122(3):259-265.
[23]  Zhou P, Su C Y, Li B W, et al. Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes[J]. Journal of Environmental Engineering, 2006, 132(1):129-136.
[24]  Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations[J]. Chemosphere, 2007, 68:428-435.
[25]  Huang M H, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant[J]. Process Safety and Environmental Protection, 2015, 93:68-74.
[26]  Prado N, Ochoa J, Amrane A. Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor[J]. Bioresource Technology, 2009, 100(15):3769-3774.
[27]  刘秀艳, 高永, 张魁. 四环素生产废水处理技术探索及工程实践[J]. 河北建筑工程学院学报, 2005, 23(1):24-26.
[28]  刘建广, 黄霞. 二相厌氧-生物接触氧化工艺处理四环素废水的研究[J]. 中国抗生素杂志, 1993, 18(6):451-455.
[29]  Shi Y J, Wang X H, Qi Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011, 191(1):103-109.
[30]  Tran N H, Urase T, Kusakabe O. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds[J]. Journal of Hazardous Materials, 2009, 171(1):1051-1057.
[31]  Katipoglu-Yazan T, Pala-Ozkok I, Ubay-Cokgor E, et al. Acute impact of erythromycin and tetracycline on the kinetics of nitrification and organic carbon removal in mixed microbial culture[J]. Bioresource Technology, 2013, 144:410-419.
[32]  Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater:Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science and Technology, 2005, 39(15):5816-5823.
[33]  贾仁勇, 夏四清, 张善发. 两种MBR工艺处理含抗生素污水效果及反应器内微生物群落结构[J]. 净水技术, 2011, 30(5):28-33.
[34]  Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy[J]. Environmental Science and Technology, 2006, 40(1):357-363.
[35]  Rivera-Utrilla J, Gómez-Pacheco C V, Sánchez-Polo M, et al. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents[J]. Journal of Environmental Management, 2013, 131:16-24.
[36]  Ocampo-Pérez R, Rivera-Utrilla J, Gómez-Pacheco C, et al. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase[J]. Chemical Engineering Journal, 2012, 213:88-96.
[37]  Novo A, André S, Viana P, et al. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater[J]. Water Research, 2013, 47(5):1875-1887.
[38]  Brown M G, Mitchell E H, Balkwill D L. Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria[J]. Antimicrobial Agents and Chemotherapy, 2008, 52(12):4518-4521.
[39]  杨颖. 北江水环境中抗生素抗性基因污染分析[D]. 广州:中山大学, 2010.
[40]  McKinney C W, Loftin K A, Meyer M T, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence[J]. Environmental Science and Technology, 2010, 44(16):6102-6109.
[41]  Reinthaler F F, Posch J, Feierl G, et al. Antibiotic resistance of E. coli in sewage and sludge[J]. Water Research, 2003, 37(8):1685-1690.
[42]  Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693.
[43]  Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5):1143-1151.
[44]  Zhang X X, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations[J]. Environmental Science and Technology, 2011, 45(7):2598-2604.
[45]  Rysz M, Mansfield W R, Fortner J D, et al. Tetracycline resistance gene maintenance under varying bacterial growth rate, substrate and oxygen availability, and tetracycline concentration[J]. Environmental Science and Technology, 2013, 47(13):6995-7001.
[46]  Borjesson S, Mattsson A, Lindgren P. Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year[J]. Journal of Water and Health, 2010, 8(2):247-256.
[47]  Zhang Y, Marrs C F, Simon C, et al. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp[J]. Science of the Total Environment, 2009, 407(12):3702-3706.
[48]  Da Silva M F, Tiago I, Veríssimo A, et al. Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant[J]. FEMS Microbiology Ecology, 2006, 55(2):322-329.
[49]  Baquero F, Negri M C, Morosini M I, et al. Antibiotic-selective environments[J]. Clinical Infectious Diseases, 1998, 27(1):5-11.
[50]  Zhang Y J, Boyd S A, Teppen B J, et al. Role of tetracycline speciation in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance[J]. Environmental Science and Technology, 2014, 48:4893-4900.
[51]  Toprak E, Veres A, Michel J B, et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection[J]. Nature Genetics, 2012, 44(1):101-105.
[52]  Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2993-3002.
[53]  Tremblay C L, Letellier A, Quessy S, et al. Antibiotic-resistant Enterococcus faecalis in abattoir pigs and plasmid colocalization and cotransfer of tet(M) and erm(B) genes[J]. Journal of Food Protection, 2012, 75(9):1595-1602.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133