Han X X,Zhao B,Ozaki Y. Surface-enhanced raman scattering for protein detection[J]. Anal. Bioanal. Chem.,2009,394:1719-1727.
[3]
Yui H. Electron-enhanced Raman scattering:A history of its discovery and spectroscopic applications to solution and interfacial chemistry[J]. Anal. Bioanal. Chem.,2010,397:1181-1190.
[4]
Ren B,Liu G K,Lian X B,et al. Raman spectroscopy on transition metals[J]. Anal. Bioanal. Chem.,2007,388:29-45.
[5]
Santaram Chilukuri. Dicke superradiance and stimulated electronic raman scattering of indium[J]. Physical Review A:Atomic Molecular and Optical Physics,1996,54:908-916.
[6]
Anh T,Nguyen T T,Shankar C,et al. Plasmonic and sers properties for Ag@Au and Au@Ag core@shell nanoparticles as a function of the size and structure[J]. Abstracts of Papers of the American Chemical Society,2011,6:242-248.
[7]
Hayashi S,Koh R,Yamamoto K,et al. Evidence for surface-enhanced raman scattering on nonmetallic surfaces:Copper phthalocyanine molecules on GaP small particles[J]. Phys. Rev. Lett.,1988,60:1085-1088.
[8]
Marshall C D,Korenowski G M. AgCl-Ag cluster enhanced optical second harmonic generation from an electrode surface[J]. J. Chem. Phys.,1986,7:4172-4180.
[9]
Quagliano L G.. Surface enhanced Raman scattering to study surface contaminants on semiconductors[J]. Surf. Sci.,2004,566:875-879.
[10]
Wang X Q,Wen H,He T J,et al. Enhancement mechanism of sers from cyanine dyes adsorbed on Ag2O colloids[J]. Spectrochimica Acta. Part A:Molecular and Biomolecular Spectroscopy,1997,53:2495-2504.
[11]
Wang Y F,Sun Z H,Hu H L,et al. Raman scattering study of molecules adsorbed on ZnS nanocrystals[J]. J. Raman. Spec.,2007,38:34-38.
[12]
Chen L,Seo H K,Mao Z,et al. Tunable plasmon properties of Fe2O3@Ag substrate for surface-enhanced raman scattering[J]. Anal.Methods,2011,3:1622-1627.
[13]
Huang J M,Sun Y H,Huang S H,et al. Crystal engineering and sers properties of Ag-Fe3O4 nanohybrids:From heterodimer to core-shell nanostructures[J]. J. Mater. Chem.,2011,21:17930-17937.
[14]
Wang Y F,Hu H L,Jing S Y,et al. Enhanced raman scattering as a probe for 4-mercaptopyridine surface-modified copper oxide nanocrystals[J]. Aanl. Sci.,2007,23:787-791.
[15]
Wang Y X,Song W,Yang J X,et al. Surface enhanced raman scattering on Cu2O/Ag composite[J]. Chem. J. Chinese. U,2011,32:1789-1793.
[16]
Wang Y F,Zhang J H,Jia H Y,et al. Mercaptopyridine surface-functionalized CdTe quantum dots with enhanced raman scattering properties[J]. J. Phys. Chem. C,2008,112:996-1000.
[17]
John R L,Ronald L B. Theory of surface-enhanced raman scattering in semiconductors[J]. J. Phys. Chem. C,2014,118:11120-11130.
[18]
Wei J,Yue W,Ichiro T,et al. Semiconductor-drive“turn-off” surface-enhanced raman scattering spectroscopy:Application in selective determination of chromium(Ⅵ) in water[J]. Chem. Sci.,2015,6:342-348.
[19]
Alessio P,Saez J A D,Aroca R F,et al. Metal-organic semiconductor nanostructures for surface-enhanced raman scattering[J]. Appl. Spectrosc.,2011,65:152-158.
[20]
Chen W P,Chen Y C,Shao F S. Evolution of complete proteomes:Guanine-cytosine pressure,phylogeny and environmental influences blend the proteomic architecture[J]. BMC Evol. Biol.,2013,13:1-15.
[21]
Gu X F,Yan Y R,Jiang G Q,et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection[J]. Anal. Bioanal. Chem.,2014,406:1885-1893.
[22]
Fleischmann M,Hill I,Robinson R J. Surface-enhnaced raman scattering from silver electrodes:Potencial and cation dependences of the very-low-frequency mode[J]. Chem. Phys. Lett.,1974,97:441-445.
[23]
Jeanmaire D L,Van Duyne R P. Surface raman spectroelectrochemistry. Part 1. Heterocyclic,Aromatic,and aliphatic-amines adsorbed on anodized silver electrode[J]. J. Electroanal. Chem.,1977,84:1-20.
[24]
Lombardi J R,Birke R L. A unified approach to surface-enhanced raman spectroscopy[J]. J. Phys. Chem. C,2008,112:5605-5617.
[25]
Stiles P L,Dieringer J A,Shah N C,et al. Surface-enhanced raman spectroscopy[J]. Anal. Chem.,2008,1:601-609.
[26]
Chen X,Hu Y J,Gao J,et al. Interaction of melamine molecules with silver nanoparticles explored by surface-enhanced raman scattering and density functional theory calculations[J]. Appl.Spectrosc.,2013,67:491-497.
[27]
Muniz-Miranda M. SERS monitoring of the catalytic reduction of 4-nitrophenol on Ag-doped titania nanoparticles[J]. Appl.Catal. B,2014,146:147-155.
[28]
Hong S,Li X. One step surface modification of gold nanoparticles for surface-enhanced Raman spectroscopy[J]. Appl. Surf. Sci.,2013,287:318-324.
[29]
Pristinski D,Tan S L,Erol M,et al. In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles[J]. J. Raman. Spec.,2006,37:762-770.
[30]
Schluecker S. SERS Microscopy:Nanoparticle probes and biomedical applications[J]. Chem. Phys. Chem.,2009,10:1344-1354.
[31]
Amendola V,Scaramuzza S,Agnoli S,et al. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys[J]. Nanoscale,2014,6:1423-1433.
[32]
Chen Y Y,Cheng H W,Tram K,et al. A paper-based surface-enhanced resonance raman spectroscopic (SERRS) immunoassay using magnetic separation and enzyme-catalyzed reaction[J]. Analyst,2013,138:2624-2631.
[33]
Zhong Q L,Liu F M,Zou D W,et al. 硫脲在HNO3介质中吸附行为的拉曼光谱研究[J]. Chem. J. Chinese U,1998,19:1640-1644.
[34]
Wallace D,Quinn E J,Armstrong D R,et al. Surface science of soft scorpionates[J]. Inorg. Chem.,2010,49:1420-1426.
[35]
Li J W,Bai Y,Mo Y J,et al. Calculation of the SERS enhancement factors of pyridine molecules adsorbed on the substrates of Fe,Co and Ni using antenna resonace model[J]. Anal.,2006,26:463-466.
[36]
Xue X X,Ji W,Mao Z,et al. Raman investigation of nanosized TiO2:Effect of crystallite size and quantum confinement[J]. J. Phys.Chem.C,2012,116:8792-8797.
[37]
Xue X X,Ji W,Mao Z,et al. Simultaneous enhancement of phonons modes with molecular vibrations due to Mg doping of a TiO2 substrate[J]. RSC Advances,2013,3:20891-20895.
[38]
Zhang P,Wang P,Chuang Y C. Depolarization ratios of resonance raman scattering in the gas phase[J]. J. Chem. Phys.,1989,90:4125-4143.
[39]
Dolata A,Kudelski W,Grochala M,et al. Surface-enhanced raman scattering (SERS) at copper(I) oxide[J]. J. Raman Spec.,1998,29:431-435. 3.0.CO;2-S target="_blank">
[40]
Wang X Q,Xiao Y J,Gao X X. Surface-enhanced near-infrared raman spectroscopy of nicotinamide adenine dinucleotides on a gold electrode[J]. J. Electronal. Chem.,1997,433:49-56.
[41]
Ling X,Xie L M,Fang Y,et al. Can graphene be used as a substrate for raman enhancement?[J]. Nano Letters,2010,10:553-561.
[42]
Xie L M,Ling X,Fang Y,et al. Graphene as a substrate to suppress fluorescence in resonance raman spectroscopy[J]. JACS,2009,131:9890-9891.
[43]
Gao L B,Ren W C,Liu B L,et al. Surface and interference coenhanced raman scattering of graphene[J]. ACS Nano.,2009,3:933-939.
[44]
Huang J,Zhang L M,Chen B A,et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in sers and catalysis[J]. Nanoscale,2010,2:2733-2738.
[45]
Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
Chuang K H,Lu C Y,Wey M Y. Effects of microwave power and polyvinyl pyrrolidone on microwave polyol process of carbon-supported Cu catalysts for CO oxidation[J]. Mater. Sci. Eng. B,2011,176:745-749.
[49]
Qi J W,Li Y D,Yang M,et al. Fabrication of nanowire network AAO and its application in sers[J]. Nanoscale Rec. Lett.,2013,8:495-499.