全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

准晶材料应用于催化、增强复合材料和储氢的研究进展

DOI: 10.16085/j.issn.1000-6613.2015.04.023, PP. 1037-1042

Keywords: 准晶,催化,制氢,复合材料,储氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

准晶是一种具有独特结构和性能的新型金属材料.本文报道了准晶材料应用的研究进展,重点阐述了准晶在甲醇水蒸气重整反应中结构和催化性能的关系,准晶改善了其增强铝合金、镁合金和高聚物复合材料的抗拉强度、屈服强度、延展性和耐磨性等力学性能,以及准晶作为镍氢二次电池负极材料时的放电容量、高倍率放电性和循环稳定性等,分析了准晶在应用中存在的结构稳定性问题,最后指出准晶的组成、结构、性能和应用需要进一步探索更有效的切合点.

References

[1]  Shechtman D,Blech I,Gratias D,et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters,1984,53(20):1951-1954.
[2]  Levine D,Steinhardt P J. Quasicrystals:A new class of ordered structures[J]. Physical Review Letters,1984,53(26):2477-2480.
[3]  董闯. 准晶材料[M]. 北京:国防工业出版社,1998:2-10.
[4]  陈波. 从“荒谬”到科学:准晶体的发现及研究进展[J]. 化学教学,2012(1):3-6.
[5]  董闯,王英敏,羌建兵,等. 准晶:奇特而又平凡的晶体——2011年诺贝尔化学奖简介[J]. 自然杂志,2012,33(6):322-327.
[6]  Masumoto T,Inoue A. Ultrafine particle of quasi-crystalline aluminum alloy and process for producing aggregate thereof:EP,0645464(A2)[P]. 1995-03-29.
[7]  Jenks C J,Thiel P A. Comments on quasicrystals and their potential use as catalysts[J]. Journal of Molecular Catalysis A:Chemical,1998,131:301-306.
[8]  闫月君,刘启斌,隋军,等. 甲醇水蒸气催化重整制氢技术研究进展[J]. 化工进展,2012,31(7):1468-1476.
[9]  Tsai A P,Yoshimura M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol[J]. Applied Catalysis A:General,2001,214:237-241.
[10]  Yoshimura M,Tsai A P. Quasicrystal application on catalyst[J]. Journal of Alloys and Compounds,2002,342:451-454.
[11]  Kameoka S,Tanabe T,Tsai A P. Al-Cu-Fe quasicrystals for steam reforming of methanol:A new form of copper catalysts[J]. Catalysis Today,2004,93-95:23-26.
[12]  Tanabe T,Kameoka S,Tsai A P. A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol[J]. Catalysis Today,2006,111:153-157.
[13]  Tanabe T,Kameoka S,Sato F,et al. Cross-section TEM investigation of quasicrystalline catalysts prepared by aqueous NaOH leaching[J]. Philosophical Magazine,2007,87:3103-3108.
[14]  Tanabe T,Kameoka S,Tsai A P. Microstructure of leached Al-Cu-Fe quasicrystal with high catalytic performance for steam reforming of methanol[J]. Applied Catalysis A:General,2010,384:241-251.
[15]  Tanabe T,Kameoka S,Tsai A P. Evolution of microstructure induced by calcinations in leached Al-Cu-Fe quasicrystal and its effects on catalytic activity[J]. Journal of Materials Science,2011,46:2242-2250.
[16]  Ngoc B P,Geantet C,Aouine M,et al. Quasicrystal derived catalyst for steam reforming of methanol[J]. International Journal of Hydrogen Energy,2008,33:1000-1007.
[17]  Kajiwara K,Suzuki S,Sato H,et al. Chirality-selective synthesis of carbon nanotubes by catalytic-chemical vapor deposition using quasicrystal alloys as catalysts[J]. Zeitschrift Fur Kristallographie,2009,224:5-8.
[18]  Kajiwara K,Suzuki S,Matsui Y,et al. Characterization of quasicrystalline Al-Cu-Fe nanoclusters as catalysts for the synthesis of carbon nanotubes[J]. Journal of Physics:Conference Series,2010,226:012008.
[19]  Ngoc B P,Geantet C,Dalmon J A,et al. Quasicrystalline structures as catalyst precursors for hydrogenation reactions[J]. Catalysis Letter,2009,131:59-69.
[20]  Hao J,Cheng H,Wang H,et al. Oxidation of cyclohexane——A significant impact of stainless steel reactor wall[J]. Journal of Molecular Catalysis A:Chemical,2007,271:42-45.
[21]  Hao J,Liu B,Cheng H,et al. Cyclohexane oxidation on a novel Ti70Zr10Co20 catalyst containing quasicrystal[J]. Chemical Communication,2009:3460-3462.
[22]  Hao J,Wang J,Wang Q,et al. Catalytic oxidation of cyclohexane over Ti-Zr-Co catalysts[J]. Applied Catalysis A:General,2009,368:29-34.
[23]  朱满,杨根仓,程素玲,等. Al72Ni12Co16准晶颗粒/铝基复合材料中的相转变及其力学性能[J]. 稀有金属材料与工程,2010,39:1604-1608.
[24]  朱满,坚增运,常芳娥,等. 准晶增强铝基复合材料的微观组织及热膨胀行为[J]. 材料热处理技术,2011,40(22):80-83.
[25]  杨永军. Al-Mn-Ti准晶中间合金的制备及在Al-25%Si中的应用[D]. 太原:太原理工大学,2010.
[26]  康慧君. Mg3Zn6Y准晶颗粒增强Mg-8Gd-3Y复合材料组织和性能[D]. 哈尔滨:哈尔滨工业大学,2009.
[27]  Zhang J,Wang X,Zhang Z,et al. Effect of Mg-Zn-Nd spherical quasicrystals on microstructure and mechanical properties of ZK60 alloy[J]. Research & Development,2011,8(3):305-312.
[28]  李小平,徐洲,于赟. 压力铸造(Al63Cu25Fe12)p/AZ91复合材料的研究[J]. 特种铸造及有色合金,2010,30(1):4-7.
[29]  赵振伟. Mg-Zn-Nd准晶/AZ91复合材料的制备及性能研究[D]. 济南:济南大学,2013.
[30]  马戎,董选普,陈树群,等. 准晶增强 Mg-0.6%Zr 合金的力学与阻尼性能[J]. 中国有色金属学报,2012,22(10):2705-2712.
[31]  Wang X,Li X,Zhang Z,et al. Preparation and wear resistance of Ti-Zr-Ni quasicrystal and polyamide composite materials[J]. Philosophical Magazine,2011,91(19-21):2929-2936.
[32]  Kothalkar A,Sharma A S,Biswas K,et al. Novel HDPE-quasicrystal composite fabricated for wear resistance[J]. Philosophical Magazine,2011,91(19-21):2944-2953.
[33]  Kothalkar A,Sharma A S,Tripathi G,et al. HDPE-quasicrystal composite:Fabrication and wear resistance[J]. Trans. Indian Inst. Met.,2012,65(1):13-20.
[34]  袁华堂,王一菁,闫超,等. 新型稀土高性能储氢合金研究进展[J].化工进展,2012,31(2):253-258.
[35]  刘万强,段潜,王立民. 准晶材料储氢研究[M]. 北京:国防工业出版社,2013:7-15.
[36]  Huang H,Liu T,Zhang Z,et al. Deuterium storage of Ti40Zr40Ni20 icosahedral quasicrystal[J]. International Journal of Hydrogen Energy,2012,37:15204-15209.
[37]  Ribeiro R M,Lemus L F,Santos dos D S. Hydrogen absorption study of Ti-based alloys performed by melt-spinning[J]. Materials Research,2013,16(3):679-682.
[38]  Takasaki A,?ywczak A,Gondek ?,et al. Hydrogen storage characteristics of Ti45Zr38Ni17-xCox (x = 4,8) alloy and quasicrystal powders produced by mechanical alloying[J]. Journal of Alloys and Compounds,2013,580:S216-S218.
[39]  Ariga Y,Takasaki A,Kuroda C,et al. Electrochemical properties of Ti45-xZr30+xNi25 (x=-4,0,4) quasicrystal and amorphous electrodes produced by mechanical alloying[J]. Journal of Alloys and Compounds,2013,580:S251-S254.
[40]  Liu W,Zhang S,Wang L. Influence of heat treatment on electrochemical properties of Ti1.4V0.6Ni alloy electrode containing icosahedral quasicrystalline phase[J]. Transactions of Nonferrous Metals Society of China,2012,22(12):3034-3038.
[41]  Baster D,Takasaki A,Kuroda C,et al. Effect of mechanical milling on electrochemical properties of Ti45Zr38xNi17+x (x=0,8) quasicrystals produced by rapid-quenching[J]. Journal of Alloys and Compounds,2013,580:S238-S242.
[42]  任敬川,张明军,刘万强. Ti45Zr35Ni17Cu3准晶电极的电化学性能[J]. 科技风,2012(13):48-50.
[43]  Liu W,Duan Q,Liang F,et al. Effect of Ce on electrochemical properties of the TiVNi quasicrystal material as an anode for Ni/MH batteries[J]. International Journal of Hydrogen Energy,2013,38(34):14810-14815.
[44]  Hu W,Yi J,Zheng B,et al. Icosahedral quasicrystalline (Ti1.6V0.4Ni)100-xScx alloys:Synthesis,structure and their application in Ni-MH batteries[J]. Journal of Solid State Chemistry,2013,202:1-5.
[45]  Liu W,Wang X,Hu W,et al. Electrochemical performance of TiVNi-quasicrystal and AB3-type hydrogen storage alloy composite materials[J]. International Journal of Hydrogen Energy,2011,36(1):616-620.
[46]  刘万强,张姗姗,王立民. Ti 基准晶复相材料电极的电化学储氢性能[J]. 应用化学,2011,28(12):1402-1407.
[47]  Liu W,Zhang S,Wang L. Ti1.4V0.6Ni quasicrystal and its composites with xV18Ti15Zr18Ni29Cr5Co7Mn alloy used as negative electrode materials for the nickel-metal hydride (Ni–MH) secondary batteries[J]. Materials Letters,2012,79:122-124.
[48]  Liu W,Zhang S,Hu W,et al. Electrochemical hydrogen storage characteristics of TiVNi-quasicrystalline composite materials[J]. International Journal of Nanotechnology,2013,10:80-88.
[49]  Liu W,Liang F,Zhang S,et al. Electrochemical properties of Ti-based quasicrystal and ZrV2 Laves phase alloy composite materials as negative electrode for Ni-MH secondly batteries[J]. Journal of Non-Crystalline Solids,2012,358:1846-1849.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133