Zhang L,Li L,Liu N,et al. Pervaporation behavior of PVA membrane containing β-cyclodextrin for separating xylene isomeric mixtures[J]. AIChE J.,2013,59:604-612.
[5]
Olejnik P,Gniadek M,Palys B. Layers of polyaniline nanotubes deposited by Langmuir-Blodgett method[J]. J. Phys. Chem. C.,2012,116:10424-10429.
[6]
Schalchli A,Benattar J,Tchoreloff P,et al. Structure of a monomolecular layer of amphiphilic cyclodextrins[J]. Langmuir,1993,9:1968-1970.
[7]
Alexandre S,Coleman W,Kasselouri A,et al. Scanning force microscopy investigation of amphiphilic cyclodextrin Langmuir-Blodgett films[J]. Thin Solid Films,1996,284:765-768.
[8]
Kawabata Y,Matsumoto M,Nakamura T,et al. Langmuir-Blodgett films of amphiphilic cyclodextrins[J]. Thin Solid Films,1988,159:353-358.
[9]
Shtykov S,Klimov B,Gorin D,et al. Properties of monomolecular layers and Langmuir-Blodgett films on the basis of β-cyclodextrins with various numbers of alkyl chains[J]. Russ. J. Phys. Chem.,2004,78:1632-1636.
[10]
Yashchenok A,Gorin D,Pankin K,et al. Transfer ratio of Langmuir-Blodgett films as an indicator of the single-crystal silicon surface modified by polyionic layers[J]. Semiconductors,2007,41:684-688.
[11]
Matsumoto M,Matsuzawa Y,Noguchi S,et al. Structure of hybrid Langmuir-Blodgett films of amphiphilic cyclodextrin and water-soluble azobenzene[J]. Mol. Crys. Liq. Crys.,2004,425:475-482.
[12]
Matsuzawa Y,Noguchi S,Sakai H,et al. Hybrid Langmuir and Langmuir-Blodgett films composed of amphiphilic cyclodextrins and hydrophobic azobenzene derivative[J]. Thin Solid Films,2006,510:292-296.
[13]
Valli L,Giancane G,Mazzaglia A,et al. Photoresponsive multilayer films by assembling cationic amphiphilic cyclodextrins and anionic porphyrins at the air/water interface[J]. Mater. Chem.,2007,17:1660-1663.
[14]
Parazak D,Khan A,Dsouza V,et al. Comparison of host-guest Langmuir-Blodgett multilayer formation by two different amphiphilic cyclodextrins[J]. Langmuir,1996,12:4046-4049.
[15]
Le Bras Y,Salle M,Leriche P,et al. Functionalization of the cyclodextrin platform with tetrathiafulvalene units:An efficient access towards redox active Langmuir-Blodgett films[J]. J. Mater. Chem.,1997,7:2393-2396.
[16]
Badis M,Van der Heyden A,Heck R,et al. Formation of Langmuir layers and surface modification using new upper-rim fully tethered bipyridinyl or bithiazolyl cyclodextrins and their fluorescent metal complexes[J]. Langmuir,2004,20:5338-5346.
[17]
Shtykov S,Kalach A,Pankin K,et al. Use of Langmuir-Blodgett films as modifiers for piezoresonance sensors[J]. J. Anal. Chem.,2007,62:490-493.
[18]
Niino H,Miyasaka H,Ouchi A,et al. Photopolymerization in a Langmuir-Blodgett film of an amphiphilic cyclodextrin derivative containing a diacetylene group[J]. Thin Solid Films,1989,179:53-57.
Kusumocahyo S,Sumaru K,Kanamori T,et al. Synthesis and characterization of an ultrathin polyion complex membrane containing β-cyclodextrin for separation of organic isomers[J]. J. Mem. Sci.,2004,230:171-174.
[21]
Smith R,Riollano M,Leung A,et al. Layer-by-Layer platform technology for small-molecule delivery[J]. Angew. Chem.,Int. Ed.,2009,48:8974-8977.
[22]
Crespo-Biel O,Dordi B,Reinhoudt D,et al. Supramolecular layer-by-layer assembly:Alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions[J]. J. Am. Chem. Soc.,2005,127:7594-7600.
[23]
Crespo-Biel O,Dordi B,Maury P,et al. Noncovalent nanoarchitectures on surfaces:From 2D to 3D nanostructures[J]. Chem. Mater.,2006,18:2545-2551.
[24]
Dorokhin D,Hsu S,Tomczak N,et al. Fabrication and luminescence of designer surface patterns with β-cyclodextrin functionalized quantum dots via multivalent supramolecular coupling[J]. ACS Nano.,2010,4:137-142.
[25]
Rojas M,Koniger R,Stoddart J,et al. Supported monolayers containing preformed bindingsites. Synthesis and interfacial binding-properties of a thiolated β-cyclodextrin derivative[J]. J. Am. Chem. Soc.,1995,117:336-343.
[26]
Beulen M,Bugler J,Lammerink B,et al. Self-assembled monolayers of heptapodant β-cyclodextrins on gold[J]. Langmuir,1998,14:6424-6429.
[27]
Beulen M,Bugler J,de Jong M,et al. Host-guest interactions at self-assembled monolayers of cyclodextrins on gold[J]. Chem.:Eur J.,2000,6:1176-1183. 3.3.CO;2-T target="_blank">
[28]
Qian J,Hentschke R,Knoll W. Superstructures of cyclodextrin derivatives on Au(111):A combined random planting molecular dynamics approach[J]. Langmuir,1997,13:7092-7098.
[29]
Mendez-Ardoy A,Steentjes T,Kudemac T,et al. Self-assembled monolayers on gold of β-cyclodextrin adsorbates with different anchoring groups[J]. Langmuir,2014,30:3467-3476.
[30]
Domi Y,Yoshinaga Y,Shimazu K. Characterization and optimization of mixed thiol-derivatized β-cyclodextrin/pentanethiol monolayers with high-density guest-accessible cavities[J]. Langmuir,2009,25:8094-8100.
[31]
Fernandez I,Araque E,Martinez-Ruiz P,et al. Gold surface patterned with cyclodextrin-based molecular nanopores for electrochemical assay of transglutaminase activity[J]. Electrochem. Comm.,2014,40:13-16.
[32]
Maeda Y,Fukuda T,Yamamoto H,et al. Regio- and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode[J]. Langmuir,1997,13:4187-4189.
[33]
Endo H,Nakaji-Hirabayashi T,Morokoshi S,et al. Orientational effect of surface-confined cyclodextrin on the inclusion of bisphenols[J]. Langmuir,2005,21:1314-1321.
[34]
Ng S,Sun T,Chan H. Chiral discrimination of enantiomers with a self-assembled monolayer of functionalized β-cyclodextrins on Au surfaces[J]. Tetra. Lett.,2002,43:2863-2866.
[35]
Domi Y,Ikeura K,Okamura K,et al. Strong inclusion of inorganic anions into β-cyclodextrin immobilized to gold electrode[J]. Langmuir,2011,27:10580-10586.
Jung J,Yi S,Jang H,et al. Facile and oriented antibody immobilization on alpha-cyclodextrin-modified sensors surfaces[J]. Macromolecul. Res.,2013,21:130-133.
[38]
Huang J,Feng Z,Yang L,et al. A sensitive and selective non-enzyme cholesterol amperometric biosensor based on host-guest effect of β-cyclodextrin for cholesterol[J],Anal. Methods:UK,2012,4:4264-4268.
[39]
Diez P,Piuleac C,Martinez-Ruiz P,et al. Supramolecular immobilization of glucose oxidase on gold coated with cyclodextrin-modified cysteamine core PAMAM G-4 dendron/Pt nanoparticles for mediatorless biosensor design[J]. Anal. Bioanal. Chem.,2013,405:3773-3781.
[40]
Onclin S,Mulder A,Huskens J,et al. Molecular printboards:Monolayers of β-cyclodextrins on silicon oxide surfaces[J]. Langmuir,2004,20:5460-5466.
[41]
Auletta T,Dordi B,Mulder A,et al. Writing patterns of molecules on molecular printboards[J]. Angew. Chem.,Int. Ed.,2004,43:369-373.
[42]
Mulder A,Onclin S,Peter M,et al. Molecular printboards on silicon oxide:Lithographic patterning of cyclodextrin monolayers with multivalent,fluorescent guest molecules[J]. Small,2005,1:242-253.
[43]
Tahir M,Lee Y. Immobilisation of β-cyclodextrin on glass:Characterisation and application for cholesterol reduction from milk[J]. Food Chem.,2013,139:475-481.
[44]
Tahir M,Kwon C,Jeong D,et al. Cholesterol reduction from milk using β-cyclodextrin immobilized on glass[J],J. Dairy Sci.,2013,96:4191-4196.
[45]
Schofield W,Badyal J. Controlled fragrant molecule release from surface-tethered cyclodextrin host-guest inclusion complexes[J]. Acs Appl. Mater. Inter.,2011,3:2051-2056.
[46]
Schofield W,Bain C,Badyal J. Cyclodextrin-functionalized hierarchical porous architectures for high-throughput capture and release of organic pollutants from wastewater[J]. Chem. Mater.,2012,24:1645-1653.
[47]
Wang Y,Chung T,Wang H. Polyamide-imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation[J]. AIChE J.,2011,57:1470-1484.
[48]
Kiasat A,Zarinderakht N,Sayyahi S. β-Cyclodextrin immobilized onto dowex resin:A unique microvessel and heterogeneous catalyst in nucleophilic substitution reactions[J]. Chin. J. Chem.,2012,30:699-702.
[49]
Teng M,Li F,Zhang B,et al. Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye[J],Colloid Surface A,2011,385:229-234.