Banerjee M,Das S,Yoon M,et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials[J]. J. Am. Chem. Soc.,2009,131(22):7524-7525.
[4]
何龙. 天然气脱碳工艺选择[J]. 科学咨询,2012(4):49-50.
[5]
国立清华大学(台湾). 以吸收法回收二氧化碳之技术手册[R]. 台北:经济部工业局,2002.
[6]
Demuynck A L W,Goesten M G,Ramos-Fernandez E V,et al. Induced chirality in a metal-organic framework by postsynthetic modification for highly selective asymmetric Aldol reactions[J]. Chem. Cat. Chem.,2014,6:2211-2214.
[7]
Goesten M G,Juan-Alca?iz J,Ramos-Fernandez E V,et al. Sulfation of metal-organic frameworks:Opportunities for acid catalysis and proton conductivity[J]. J. Catal.,2011,281(1):177- 187.
[8]
Juan-Alca?iz J,Gielisse R,Lago A B,et al. Towards acid MOFs-catalytic performance of sulfonic acid functionalized architectures[J]. Catal. Sci. Technol.,2013,3(9):2311-2318.
[9]
Candu N,Tudorache M,Florea M,et al. Postsynthetic modification of a metal-organic framework (MOF) structure for enantioselective catalytic epoxidation[J]. Chem. Plus. Chem.,2013,78:443-450.
[10]
Gerald O. Carbon dioxide gets grounde[J]. Chemical Engineering,2000,107(3):41-45.
Zhu W T,He C,Wu P Y,et al. “Click” post-synthetic modification of metal-organic frameworks with chiral functional adduct for heterogeneous asymmetric catalysis[J]. Dalton Trans.,2012,41:3072-3077.