全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

表面活性剂对水基纳米流体特性影响的研究进展

DOI: 10.16085/j.issn.1000-6613.2015.04.002

Keywords: 表面活性剂,纳米流体,稳定性,热导率,黏度

Full-Text   Cite this paper   Add to My Lib

Abstract:

表面活性剂作为一种分散剂,广泛应用于新型换热工质——纳米流体中.研究纳米流体的各种特性对于其在实际的能量传递系统中的应用有重要意义.重点总结和比较了水基纳米流体中表面活性剂对体系的稳定性、热导率和黏度影响的实验研究,阐述了纳米流体中表面活性剂的作用机理,对目前的研究中存在的问题进行了分析.最后,提出了有助于完善表面活性剂对水基纳米流体特性影响的4点建议混合表面活性剂的组合及其配比对纳米流体的稳定性、热导率和黏度的影响;使用分子动力模拟等方法来研究表面活性剂对纳米流体特性的影响;表面活性剂影响下的纳米流体的稳定性和热导率及黏度之间的关系;纳米流体中众多不确定因素的量化分析.

References

[1]  Barnard T M,Leadbeater N E,Boucher M B,et al. Continuous-flow preparation of biodiesel using microwave heating[J]. Energy & Fuels,2007,21(3):1777-1781. target="_blank">
[2]  Yang Liu,Du Kai. A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types[J]. International Journal of Refrigeration,2012,35(7):1978-1988.
[3]  Cintas P,Mantegna S,Gaudino E C,et al. A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel[J]. Ultrasonics Sonochemistry,2010,17(6):985-989.
[4]  Dang Liem X,Annapureddy Harsha V R,Sun Xiuquan,et al. Understanding nanofluid stability through molecular simulation[J]. Chemical Physics Letters,2012,551:115-120.
[5]  Maxwell J C. Electricity and Magnetism,PartⅡ[M]. 3rd ed. London:Clarendon Press,1904.
[6]  Ghayal D,Pandit A B,Rathod V K. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil[J]. Ultrasonics Sonochemistry,2013,20(1):322-328.
[7]  Chen Y H,Chang C Y,Huang Y H,et al. Method of increasing transesterification of oils:US,2008/01718891 A1[P]. 2008-07-17.
[8]  Hamilton R L,Crosser O K. Thermal conductivity of heterogeneous two component systems[J]. Ind. Eng. Chem. Fundam.,1962,1(3):182-191.
[9]  Harvey A P,Mackley M R,Seliger T. Process intensification of biodiesel production using a continuous oscillatory flow reactor[J]. Journal of Chemical Technology and Biotechnology,2003,78(2-3):338-341.
[10]  Yu W,Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:A renovated Maxwell model[J]. J. Nanoparticle Res.,2003,5:167-171.
[11]  Ondrey G. High-speed reactor will spin out biodiesel fuel[J]. Chemical Engineering Journal,2007,7:10.
[12]  Frascari D,Zuccaro M,Pinelli D,et al. A pilot-scale study of alkali-catalyzed sunflower oil transesterification with static mixing and with mechanical agitation[J]. Energy & Fuels,2008,22(3):1493-1501. target="_blank">
[13]  Bhattacharya P,Saha S K,Yadav A,et al. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids[J]. J. Appl. Phys.,2004,95(11):6492-6494.
[14]  Xue Q Z. Model for thermal conductivity of carbon nanotube based composites[J]. Physica B:Condens. Matter,2005,368(1-4):302-307.
[15]  Wen Z,Yu X,Tu S-T,et al. Intensification of biodiesel synthesis using zigzag micro-channel reactors[J]. Bioresource Technology,2009,100(12):3054-3060.
[16]  Narváez P,Sánchez F,Godoy-Silva R. Continuous methanolysis of palm oil using a liquid–liquid film reactor[J]. Journal of the American Oil Chemists' Society,2009,86(4):343-352.
[17]  Boucher M B,Weed C,Leadbeater N E,et al. Pilot scale two-phase continuous flow biodiesel production via novel laminar flow reactor- separator[J]. Energy & Fuels,2009,23(5):2750-2756. target="_blank">
[18]  Leong K C,Yang C,Murshed S M S. A model for the thermal conductivity of nanofluids:The effect of interfacial layer[J]. J. Nanoparticle Res.,2006,8:245-254.
[19]  Murshed S M S,Leong K C,Yang C. Investigations of thermal conductivity and viscosity of nanofluids[J]. Int. J. Therm. Sci.,2008,47:560-568.
[20]  Li X f,Zhu D S,Wang X J,et al. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids[J]. Thermochimica acta,2008,469(1-2):98-103.
[21]  Qiu Z,Zhao L,Weatherley L. Process intensification technologies in continuous biodiesel production[J]. Chemical Engineering and Processing:Process Intensification,2010,49(4):323-330.
[22]  Zhou Mingzheng,Xia Guodong,Li Jian,et al. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions[J]. Experimental Thermal and Fluid Science,2012,36:22–29.
[23]  Kiss A A. Heat-integrated reactive distillation process for synthesis of fatty esters[J]. Fuel Processing Technology,2011,92(7):1288-1296.
[24]  Wusiman Kuerbanjiang,Jeong Hyomin,Tulugan Keilmu,et al. Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS[J]. International Communications in Heat and Mass Transfer,2013,41:28-33.
[25]  杨采影. 水基纳米流体分散稳定性及其对导热能力的影响[D]. 广州:广东工业大学,2011.
[26]  Einstein A. Investigation on the theory of the brownian movement[R]. New York:Dover,1956.
[27]  Cao P,Dubé M A,Tremblay A Y. Methanol recycling in the production of biodiesel in a membrane reactor[J]. Fuel,2008,87(6):825-833.
[28]  Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. J. Fluid Mech.,1977,83(1):97-117.
[29]  Zhang S,Zu Y G,Fu Y J,et al. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst[J]. Bioresource Technology,2010,101(3):931-936.
[30]  Hosseini S M,Moghadassi A R,Henneke D E. A new dimensionless group model for determining the viscosity of nanofluids[J]. Journal of Thermal Analysis and Calorimetry,2010,100(3):873-877.
[31]  Gole V L,Gogate P R. A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors[J]. Chemical Engineering and Processing:Process Intensification,2012,53:1-9.
[32]  Yang Liu,Du Kai,Ding Yuehong,et al. Viscosity-prediction models of ammonia water nanofluids based on various dispersion types[J].Powder Technology,2012,215/216:210-218.
[33]  Kojima Y,Asakura Y,Sugiyama G,et al. The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor[J]. Ultrasonics Sonochemistry,2010,17(6):978-984.
[34]  Kozyuk O. Apparatus and method for producing biodiesel from fatty acid feedstock:US,7754905 B2[P]. 2010-07-13.
[35]  Li Xinfang,Zhu Dongsheng,Wang Xianju. Experimental investigation on viscosity of Cu-H2O nanofluids[J]. Journal of Wuhan University of Technology:Materials Science Edition,2009,24(1):98-103.
[36]  Kelkar M A,Gogate P R,Pandit A B. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation[J]. Ultrasonics Sonochemistry,2008,15(3):188-194.
[37]  Kelkar M A,Gogate P R,Pandit A B. Cavitation as a novel tool for process intensification of biodiesel synthesis[C]//Proceedings of the 6th International Symposium on Catalysis in Multiphase Reactors. Pune,India:2007.
[38]  Hydro Dynamics,Inc. Shock wave power biodiesel reactor[EB/OL]. 2013. http://www.hydrodynamics.com/biodiesel-reactors/.
[39]  Ghadimi A,Metselaar I H. The influence of surfactant and ultrasonic processing on improvement of stability,thermal conductivity and viscosity of Titania nanofluid[J]. Experimental Thermal and Fluid Science,2013,51:1-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133