全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

热管科学及吸液芯研究进展回顾与展望

DOI: 10.16085/j.issn.1000-6613.2015.04.001, PP. 891-902

Keywords: 热管,吸液芯,加工制造,热传导,相变

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先回顾了热管基本工作原理,随后分别简述了热管发展过程中衍生的热虹吸管、往复热管、脉动热管、回路热管、旋转热管、微型热管和可变导热管.列举了它们在提高铁路路基可靠性、延长机械零件寿命、强化集成电路散热和提高温度测量精度等方面的应用.着重阐述了热管核心吸液芯结构以及复合吸液芯的发展带来的渗透率和毛细力的提高.热管材料的相容性制约热管的使用寿命,相容性材料的选择亦是热管设计的重要内容.最后简述了热管传统加工制造方法,即管壳与吸液芯分开加工的方法.热管微型化发展和与服务对象的结合对热管形状和吸液芯结构多元化的要求不断提高.提出了基于三维打印的新型热管加工方法,此方法便于热管管体与吸液芯结构一次成型,并直接将管体与被散热体集成一体,从而达到以往难以实现的复杂散热效果和经济效益.三维打印技术的飞速发展有望为吸液芯结构的创新提供新的空间,同时为热管的应用提供一个更为广阔的市场.

References

[1]  Choi S U S. Enhancement thermal conductivity of fluids with nanoparticles[C]//Developments and Applications of Non-Newtonian Flows,New York:ASME Publication,1995:99-105.
[2]  洪欢喜,武卫东,盛伟,等. 纳米流体制备的研究进展[J]. 化工进展,2008,27(12):1923-1928. 浏览
[3]  Zoubida Haddad,Chérifa Abid,Hakan F Oztop,et al. A review on how the researchers prepare their nanofluids[J]. International Journal of Thermal Sciences,2014,76:168-189.
[4]  Kang S W,Tsai S H,Chen H C. Fabrication and test of radial grooved micro heat pipes[J]. Applied Thermal Engineering,2002,22(14):1559-1568.
[5]  Mock P R,Marcus D B,Edelman E A. Communications technology satellite:A variable conductance heat pipe application[J]. Journal of Spacecraft and Rockets,1975,12(12):750-753.
[6]  Groll M,R?sler S. Operation principles and performance of heat pipes and closed two-phase thermosyphons[J]. J. Non-Equilib. Thermodyn,1992,17(2):91-151.
[7]  Marcarino P,Merlone A. Gas-controlled heat-pipes for accurate temperature measurements[J]. Applied Thermal Engineering,2003,23(9):1145-1152.
[8]  Ghadimi A,Saidur R,Metselaar H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass Transfer,2011,54(17-18):4051-4068.
[9]  Watanabe K,Kimura A,Kawabata K,et al. Development of a variable-conductance heat-pipe for a sodium-sulfur (NAS) battery[J]. Furukawa Review,2001,20:71-76.
[10]  Shoghl S N,Bahrami M. Experimental investigation on pool boiling heat transfer of ZnO,and CuO water-based nanofluids and effect of surfactant on heat transfer coefficient[J]. International Communications in Heat and Mass Transfer,2013,45:122-129.
[11]  张俊,李苏巧,彭林明,等. 纳米流体强化气液传质研究进展[J]. 化工进展,2013,32(4):732-739.
[12]  宣益民,李强. 纳米流体能量传递理论与应用[M]. 北京:科学出版社,2009:24-27.
[13]  彭小飞,俞小莉,夏立峰,等. 纳米流体悬浮稳定性影响因素[J]. 浙江大学学报:工学版,2007,41(4):577-580.
[14]  Majid Emami Meibodi,Mohsen Vafaie-Sefti,Ali Morad Rashidi,et al. The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids[J]. International Communications in Heat and Mass Transfer,2010(37):319-323.
[15]  李金平,吴疆,梁德青,等. 纳米粒子悬浮液中分散剂选择的实验研究[J]. 兰州理工大学学报,2006,32(3):63-66.
[16]  Kempers R,Ewing D,Ching C Y. Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes[J]. Applied Thermal Engineering,2006,26(5):589-595.
[17]  Wanous D J,Marcus B D,Kirkpatrick J P. A variable conductance heat pipe flight experiment-Performance in space[C]//American Institute of Aeronautics and Astronautics,Thermophysics Conference,Denver,Colo.,1975.
[18]  Mock P R,Marcus D B,Edelman E A. Communications technology satellite:A variable conductance heat pipe application[J]. Journal of Spacecraft and Rockets,1975,12(12):750-753.
[19]  Kaya T. Analysis of vapor–gas bubbles in a single artery heat pipe[J]. International Journal of Heat and Mass Transfer,2009,52(25-26):5731-5739.
[20]  李兴,陈颖,莫松平,等. 表面活性剂对水基纳米流体固液相变特性的影响[J]. 化工学报,2013,49(6):3324-3330.
[21]  郝素菊,张玉柱,蒋武锋,等. 含碳纳米管悬浮液的稳定性[J]. 东北大学学报:自然科学版,2007,28(10):1438-1441.
[22]  Li Y,He H,Zeng Z. Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick[J]. Applied Thermal Engineering,2013,50(1):342-351.
[23]  Zhu D S,Li X F,Wang N,et al. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids[J]. Current Applied Physics,2009,9(1):131-139.
[24]  林海斌,张国贤,黄林林,等. 纳米流体的分散性研究及其热物性测量[J]. 材料导报:研究篇,2010,24(6):29-32.
[25]  程波,杜恺,张小松,等. 氨水-纳米炭黑纳米流体的稳定性[J]. 化工学报,2008,59(s2):49-52. 浏览
[26]  Tang Y,Deng D,Huang G,et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices[J]. Energy Conversion and Management,2013,66:66-76.
[27]  Yang Liu,Du Kai,Niu Xiaofeng,et al. An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids[J]. International Journal of Refrigeration,2011,34(8):1741-1748.
[28]  Semenic T,Catton I. Experimental study of biporous wicks for high heat flux applications[J]. International Journal of Heat and Mass Transfer,2009,52(21-22):5113-5121.
[29]  宋晓岚,邱冠周,史训达,等. 混合表面活性剂分散纳米CeO2颗粒的协同效应[J]. 湖南大学学报:自然科学版,2005,32(5):95-99.
[30]  Yeh C C,Chen C N,Chen Y M. Heat transfer analysis of a loop heat pipe with biporous wicks[J]. International Journal of Heat and Mass Transfer,2009,52(19):4426-4434.
[31]  庄骏,张红.热管技术及其工程应用[M]. 北京:化学工业出版社,2000.
[32]  Groll M,Heine D,Spendel T. Heat recovery units employing reflux heat pipes as components[R]. Final Report,Contract EE-81- 133D(B),Commission of the European Communities Report EUR9166EN,1984.
[33]  王赛,石西昌. 表面活性剂对纳米氧化锌粒径和形貌的影响研究[J]. 化工新型材料,2007,35(8):43-47.
[34]  莫松平,陈颖,李兴,等. 表面活性剂对二氧化钛纳米流体分散性的影响[J]. 材料导报B:研究篇,2013,27(6):43-46.
[35]  包楚才,李超,皮振邦. 表面活性剂对CdSSe-H2O纳米流体稳定性影响[J]. 化学工程与装备,2012,7:32-36.
[36]  孙玉利,左敦稳,王宏宇,等. 表面活性剂对纳米CeO2在水介质中分散性能的影响[J]. 南京航空航天大学学报,2011,43(1):71-74.
[37]  陈金媛,李娜,方金凤. 表面活性剂对纳米TiO2在水中分散与沉降性能的影响[J]. 浙江工业大学学报,2012,40(6):595-598.
[38]  Groll M. Heat pipe research and development in Western Europe[J]. Heat Recovery Systems and CHP,1989,9(1):19-66.
[39]  林本兰,崔升,沈晓东. 分散剂对纳米四氧化三铁磁流体稳定性的影响[J]. 无机盐工业,2011,43(8):25-28.
[40]  Lidbury J A. A helium heat pipe[R]. Rutherford Laboratory,England:Nimrod Design Group Report NDG-72-11,1972.
[41]  Marto P J,Mosteller W L. Effect of nucleate boiling on the operation of low temperature heat pipes[C]//ASME,A69-43544,1969.
[42]  Phillips E C. Low-temperature heat pipe research program[R]. NASA,1969.
[43]  Keser D. Experimental determination of properties of saturated sintered wicks[C]//Proc. 1st International Heat Pipe Conference, Stuttgart,1973.
[44]  王良虎,向军,李菊香. 纳米流体的稳定性研究[J]. 材料导报,2011,25(17):17-20.
[45]  李强. 纳米流体强化换热机理研究[D]. 南京:南京理工大学,2004.
[46]  Moritz K,Pruschek R. Limits of energy transport in heat pipes[R]. NASA STI/Recon Technical Report N,1974,75:28354.
[47]  Vinz P,Busse C A. Axial heat transfer limits of cylindrical sodium heat pipes between 25W/cm2 and 15.5kW/cm2[C]//Proc. 1st International Heat Pipe Conference,Stuttgart,1973.
[48]  Quataert D,Busse C A,Geiger F. Long time behavior of high temperature tungsten-rhenium heat pipes with lithium or silver as working fluid[C]//Proc. 1st International Heat Pipe Conference,Stuttgart,Germany,1973.
[49]  Yang Liu,Du Kai. A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types[J]. International Journal of Refrigeration,2012,35(7):1978-1988.
[50]  李西兵,李勇,汤勇,等. 烧结式微热管吸液芯的成型方法[J]. 华南理工大学学报:自然科学版,2008,36(10):114-119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133