Cai Z Y,Zhang J T,Xue F,et al. 2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding[J]. Analytical Chemistry,2014,86(10):4840-4847.
[2]
Zhang J T,Cai Z Y,Kwak D H,et al. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A[J]. Analytical Chemistry,2014,86(18):9036-9041.
[3]
Dragan E S. Design and applications of interpenetrating polymer network hydrogels:A review[J]. Chemical Engineering Journal,2014,243:572-590.
[4]
Ahmed A A K,Naik H S B,Sherigara B S. Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium[J]. Carbohydrate Research,2009,344(5):699-706.
[5]
Yang J,Chen J,Pan D,et al. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery[J]. Carbohydrate Polymers,2013,92(1):719-725.
[6]
Samanta H S,Ray S K. Synthesis,characterization,swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide[J]. Carbohydrate Polymers,2014,99:666-678.
[7]
Kim S J,Yoon S G,Kim S I. Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride)[J]. Journal of Applied Polymer Science,2004,91(6):3705-3709.
[8]
Yin L C,Fei L K,Tang C,et al. Synthesis,characterization,mechanical properties and biocompatibility of interpenetrating polymer network-super-porous hydrogel containing sodium alginate[J]. Polymer International,2007,56(12):1563-1571.
[9]
Li X,Xu S M,Wang J,et al. Structure and characterization of amphoteric semi-IPN hydrogel based on cationic starch[J]. Carbohydrate Polymers,2009,75(4):688-693.
[10]
Murthy P S K,Mohan Y M,Sreeramulu J,et al. Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate):Preparation,swelling and diffusion characteristics evaluation[J]. Reactive and Functional Polymers,2006,66(12):1482-1493.
[11]
Kim S J,Lee C K,Kim S I. Characterization of the water state of hyaluronic acid and poly(vinyl alcohol) interpenetrating polymer networks[J]. Journal of Applied Polymer Science,2004,92(3):1467-1472.
[12]
Mahdavinia G R,Marandi G B,Pourjavadi A,et al. Semi-IPN carrageenan-based nanocomposite hydrogels:Synthesis and swelling behavior[J]. Journal of Applied Polymer Science,2010,118(5):2989-2997.
Li X,Wu W,Liu W. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels[J]. Carbohydrate Polymers,2008,71(3):394-402.
[15]
Crispim E G,Piai J F,Fajardo A R,et al. Hydrogels based on chemically modified poly(vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate:Preparation and characterization[J]. Express Polymer Letters,2012,6(5):383-395.
[16]
Jain E,Srivastava A,Kumar A. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications[J]. Journal of Materials Science:Materials in Medicine,2009,20(1):S173-S179.
[17]
Gil E S,Hudson S M. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels[J]. Biomacromolecules,2006,8(1):258-264.
[18]
Wu W,Li W J,Wang L Q,et al. Synthesis and characterization of pH- and temperature-sensitive silk sericin/poly(N-isopropylacrylamide) interpenetrating polymer networks[J]. Polymer International,2006,55(5):513-519.
[19]
Wu W,Wang D S. A fast pH-responsive IPN hydrogel:Synthesis and controlled drug delivery[J]. Reactive and Functional Polymers,2010,70(9):684-691.
[20]
Akpalo E,Bidault L,Boissière M,et al. Fibrin-polyethylene oxide interpenetrating polymer networks:New self-supported biomaterials combining the properties of both protein gel and synthetic polymer[J]. Acta Biomaterialia,2011,7(6):2418-2427.
[21]
Lee F,Kurisawa M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering[J]. Acta Biomaterialia,2013,9(2):5143-5152.
[22]
Liu Y,Cui Y D. Thermosensitive soy protein/poly (n-isopropylacrylamide) interpenetrating polymer network hydrogels for drug controlled release[J]. Journal of Applied Polymer Science,2011,120(6):3613-3620.
[23]
Zhao Y,Tan T,Kinoshita T. Swelling kinetics of poly(aspartic acid)/poly(acrylic acid) semi-interpenetrating polymer network hydrogels in urea solutions[J]. Journal of Polymer Science Part B:Polymer Physics,2010,48(6):666-671.
[24]
Chen J,Liu M,Liu H,et al. Synthesis and properties of thermo- and pH-sensitive poly(diallyldimethylammonium chloride)/poly(N,N- diethylacrylamide) semi-IPN hydrogel[J]. Chemical Engineering Journal,2010,159(1-3):247-256.
[25]
Ajiro H,Takemoto Y,Asoh T-a,et al. Novel polyion complex with interpenetrating polymer network of poly(acrylic acid) and partially protected poly(vinylamine) using N-vinylacetamide and N-vinylformamide[J]. Polymer,2009,50(15):3503-3507.
[26]
Mandal B,Ray S K,Bhattacharyya R. Synthesis of full and semi Interpenetrating hydrogel from polyvinyl alcohol and poly(acrylic acid-co-hydroxyethylmethacrylate) copolymer:Study of swelling behavior,network parameters,and dye uptake properties[J]. Journal of Applied Polymer Science,2012,124(3):2250-2268.
[27]
Bhattacharyya R,Ray S K. Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethyl cellulose/poly(acrylamide-co-hydroxyethy methacrylate) semi- interpenetrating network hydrogel[J]. Polymer Engineering and Science,2013,53(11):2439-2453.
[28]
Solpan D,Torun M,Guven G. The usability of (sodium alginate/acrylamide) semi-interpenetrating polymer networks on removal of some textile dyes[J]. Journal of Applied Polymer Science,2008,108(6):3787-3795.
[29]
Hajizadeh S,Kirsebom H,Leistner A,et al. Composite cryogel with immobilized concanavalin A for affinity chromatography of glycoproteins[J]. Journal of Separation Science,2012,35(21):2978-2985.
[30]
Dragan E S,Perju M M,Dinu M V. Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes[J]. Carbohydrate Polymers,2012,88(1):270-281.
[31]
Dragan E S,Loghin D F A. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix[J]. Chemical Engineering Journal,2013,234:211-222.
[32]
Dragan E S,Dimu M V,Apopei D F. Macroporous anionic interpenetrating polymer networks composite hydrogels and their interation with Methylene Blue[J]. International Journal Chemistry,2012,1:548-569.
[33]
Huang D J,Wang W B,Kang Y R,et al. Efficient adsorption and recovery of Pb(Ⅱ) from aqueous solution by a granular pH-sensitive
[34]
chitosan-based semi-IPN hydrogel[J]. Journal of Macromolecular Science Part A:Pure and Applied Chemistry,2012,49(11):971-979.
[35]
Solpan D,Torun M. Investigation of complex formation between (sodium alginate/acrylamide) semi-interpenetrating polymer networks and lead,cadmium,nickel ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,268(1-3):12-18.
[36]
Apopei D F,Dinu M V,Trochimczuk A W,et al. Sorption isotherms of heavy metal ions onto semi-interpenetrating polymer network cryogels based on polyacrylamide and anionically modified potato starch[J]. Industrial and Engineering Chemistry Research,2012,51(31):10462-10471.
[37]
Chauhan G S,Mahajan S. Use of novel hydrogels based on modified cellulosics and methacrylamide for separation of metal ions from water systems[J]. Journal of Applied Polymer Science,2002,86(3):667-671.
[38]
Chauhan K,Chauhan G S,Ahn J H. Synthesis and characterization of novel guar gum hydrogels and their use as Cu2+ sorbents[J]. Bioresource Technology,2009,100(14):3599-3603.
[39]
Wang W B,Huang D J,Kang Y R,et al. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion[J]. Colloids and Surfaces B:Biointerfaces,2013,106:51-59.
[40]
Wang W B,Kang Y R,Wang A Q. One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions[J]. Journal of Polymer Research,2013,20(3):101-110.
[41]
Tang Q W,Sun X M,Li Q H,et al. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions[J]. Science and Technology of Advanced Materials,2009,10(1):015002-015008.
[42]
Yamashita K,Nishimura T,Nango M. Preparation of IPN-type stimuli responsive heavy-metal-ion adsorbent gel[J]. Polymers for Advanced Technologies,2003,14(3-5):189-194.
[43]
Wang J J,Liu F. Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation[J]. Polymer Bulletin,2013,70(4):1415-1430.
[44]
Wang J J,Liu F,Wei J. Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal[J]. Polymer Bulletin,2011,67(8):1709-1720.
[45]
Bessbousse H,Rhlalou T,Verchere J F,et al. Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix[J]. Journal of Membrane Science,2008,307(2):249-259.
[46]
Pan J Y,Wang S,Zhang R f. Ion-imprinted interpenetrating polymer networks for preconcentration and determination of Cd(Ⅱ) by flame atomic absorption spectrometry[J]. Chemia Analityczna,2013,51:701-713.
[47]
Liu Y H,Cao X H,Hua R,et al. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel[J]. Hydrometallurgy,2010,104(2):150-155.
[48]
Wang J J,Liu F. Thermoresponsive ion-imprinted with interpenetrating network structure for removal of heavy metal ions[J]. Advanced Materials Research,2013,643(4):83-86.
Smithmyer M E,Sawicki L A,Kloxin A M. Hydrogel scaffolds as in-vitro models to study fibroblast activation in wound healing and disease[J]. Biomaterials Science,2014,2(5):634-650.