全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

剩余污泥微波热解技术研究进展

DOI: 10.16085/j.issn.1000-6613.2015.09.036

Keywords: 剩余污泥,微波,热解,优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

剩余污泥的产量大,处理处置费用高,已成为困扰污水处理厂的难题。在惰性条件下热解剩余污泥生成生物油、生物气以及污泥生物炭等产物,可实现能量和资源的同步回收,应用前景极为广阔。本文总结了目前对于污泥特性、热解温度、升温速率、微波吸收剂、化学添加剂、载气对剩余污泥微波热解的影响的研究,并探讨了污泥热解机制,为微波热解剩余污泥提供了关键技术的参数,利于提高污泥热解效率,优化热解产物品质,为促进污泥微波热解系统化、产业化提供技术支持。同时指出了污泥微波热解受限于微波热解设备,致使其处理投资成本高及处理量小,为污泥微波热解工业化提出了巨大的挑战。最后展望了污泥微波热解的发展趋势及应注重攻克的关键问题。

References

[1]  戴晓虎. 我国城镇污泥处理处置现状及思考[M]. 给水排水,2012,38(2):1-5.
[2]  王建华. 城市污泥处置新技术发展及研究[J]. 中国市政工程,2013(4):41-44.
[3]  国务院办公厅“十二五”全国城镇污水处理及再生利用设施建设规划[J]. 中国环保产业,2012(6):4-13.
[4]  崔筝. 近年来违法倾倒污泥事件盘点[EB/OL]. 财新网. http://special.caixin.com/2013-07-23/100559337.html. 2013-7-23/2014-5-16.
[5]  Breulmann M,van Afferden M,Fuehner C. Biochar:Bring on the sewage[J]. Nature,2015,518(7540):483-483.
[6]  罗万江,兰新哲,宋永辉. 油页岩微波热解气态产物析出特性[J]. 化工进展,2015,34(3):689-694. 浏览
[7]  Macquarrie D J,Clark J H,Fitzpatrick E. The microwave pyrolysis of biomass[J]. Biofuels Bioproducts & Biorefining Biofpr,2012,6(5):549-560.
[8]  Lin Q H,Chen G Y,Liu Y K. Scale-up of microwave heating process for the production of bio-oil from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis,2012,94:114-119.
[9]  左薇,田禹. 微波高温热解污水污泥制备生物质燃气[J]. 哈尔滨工业大学学报,2011,43(6):25-28.
[10]  Tian Y,Zuo W,Ren Z Y,et al. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety[J]. Bioresource Technology,2011,102(2):2053-2061.
[11]  Trung Ngoc T,Jensen P A,Dam-Johansen K,et al. Influence of the pyrolysis temperature on sewage sludge product distribution,bio-oil,and char properties[J]. Energy & Fuels,2013,27(3):1419-1427
[12]  Tsai W T,Lee M K,Chang J H,et al. Characterization of bio-oil from induction-heating pyrolysis of food processing sewage sludges using chromatographic analysis[J]. Bioresource Technology,2009,100(9):2650-2654.
[13]  Fonts I,Juan A,Gea G,et al. Sewage sludge pyrolysis in fluidized bed,1:Influence of operational conditions on the product distribution[J]. Industrial&Engineering Chemistry Research,2008,47(15):5376-5385.
[14]  Lu H,Zhang W,Wang S,et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures[J]. Journal of Analytical and Applied Pyrolysis,2013,102:137-143.
[15]  Sanchez M E,Lindao E,Margaleff D,et al. Bio-fuels and bio-char production from pyrolysis of sewage sludge[J]. Journal of Residuals Science & Technology,2009,6(1):35-41.
[16]  Amari T,Tanaka M,Koga Y,et al. Biomass solid fuel from sewage sludge with pyrolysis and co-firing in coal power plant[C]//Proceedings of the Japan Society of Mechanical Engineers,2006 Symposium on Environmental Engineering,2006:151-153.
[17]  Sanchez M E,Lindao E,Margaleff D,et al. Pyrolysis of agricultural residues from rape and sunflowers:Production and characterization of bio-fuels and biochar soil management[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):142-144.
[18]  Khan S,Chao C,Waqas M,et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield,metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology,2013,47(15):8624-8632.
[19]  Dai Q,Jiang X,Jiang Y,et al. Temperature influence and distribution in three phases of PAHs in wet sewage sludge pyrolysis using conventional and microwave heating[J]. Energy & Fuels,2014,28(5):3317-3325.
[20]  Tian Y,Lin F,Huang J. Effect of microwave radiation on immobilization of heavy metals in sediment sludge[J]. Soil & Sediment Contamination,2007,16(6):605-615.
[21]  Zielińska A,Oleszczuk P,Charmas B,et al. Effect of sewage sludge properties on the biochar characteristic[J]. Journal of Analytical and Applied Pyrolysis,2015,112:201-213.
[22]  Han R,Liu J,Zhang Y,et al. Dewatering and granulation of sewage sludge by biophysical drying and thermo-degradation performance of prepared sludge particles during succedent fast pyrolysis[J]. Bioresource Technology,2012,107:429-436.
[23]  方琳,赵绪新,田禹,等. 微波循环热解对污泥固态产物特性的影响研究[J]. 环境科学与管理,2009(8):22-24.
[24]  Menendez J A,Inguanzo M,Pis J J. Microwave-induced pyrolysis of sewage sludge[J]. Water Research,2002,36(13):3261-3264.
[25]  Lillo-Rodenas M A,Ros A,Fuente E,et al. Further insights into the activation process of sewage sludge-based precursors by alkaline hydroxides[J]. Chemical Engineering Journal,2008,142(2):168-174.
[26]  Zhang F S,Nriagu J O,Itoh H. Mercury removal from water using activated carbons derived from organic sewage sludge[J]. Water Research,2005,39(2-3):389-395.
[27]  Ros A,Lillo-Rodenas M A,Fuente E,et al. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere,2006,65(1):132-140.
[28]  Sevilla M,Mokaya R. Energy storage applications of activated carbons:Supercapacitors and hydrogen storage[J]. Energy & Environmental Science,2014,7(4):1250-1280.
[29]  Jindarom C,Meeyoo V,Rirksomboon T,et al. Production of bio-oil by oxidative pyrolysis of sewage sludge in rotating fixed bed reactor[J]. Asian J. Energy Environ,2006,7(4):401-409.
[30]  Zhai Y,Peng W,Zeng G,et al. Pyrolysis characteristics and kinetics of sewage sludge for different sizes and heating rates[J]. Journal of Thermal Analysis and Calorimetry,2012,107(3):1015-1022.
[31]  Khiari B,Marias F,Zagrouba F,et al. Analytical study of the pyrolysis process in a wastewater treatment pilot station[J]. Desalination,2004,167(1-3):39-47.
[32]  田禹,赵博研,左薇. 传统热源与微波热源热解污泥特性的TG-FTIR分析[J]. 哈尔滨工业大学学报,2010(6):919-924.
[33]  Zhang B,Xiong S,Xiao B,et al. Mechanism of wet sewage sludge pyrolysis in a tubular furnace[J]. International Journal of Hydrogen Energy,2011,36(1):355-363.
[34]  Matsuoka K,Shinbori T,Kuramoto K,et al. Mechanism of woody biomass pyrolysis and gasification in a fluidized bed of porous alumina particles[J]. Energy & Fuels,2006,20(3):1315-1320.
[35]  Deng W,Wang X,Yu W,et al. Progress in Environmental Science and Engineering,Pts 1-4:Hydrogen-rich gas production from microwave pyrolysis of sewage sludge at high temperature[M]. Xu Q J,Ju Y H,USA,Ge H H. USA,2013:2302-2306.
[36]  Dominguez A,Menendez J A,Inguanzo M,et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource Technology,2006,97(10):1185-1193.
[37]  张辉,胡勤海,吴祖成,等. 城市污泥能源化利用研究进展[J]. 化工进展,2013,32(5):1145-1151.
[38]  Yin C G. Microwave-assisted pyrolysis of biomass for liquid biofuels production[J]. Bioresource Technology,2012,120:273-284.
[39]  胡艳军,郑小艳,宁方勇. 污水污泥热解过程的能量平衡与反应热分析[J]. 动力工程学报,2013,33(5):399-404.
[40]  胡艳军,宁方勇. 污水污泥低温热解技术工艺与能量平衡分析[J]. 环境科学与技术,2013,36(4):119-124.
[41]  丁慧. 含油污泥微波热解工艺条件优化现场实验研究[J]. 环境污染与防治,2013,35(4):81-85.
[42]  Motasemi F,Afzal M T. A review on the microwave-assisted pyrolysis technique[J]. Renewable and Sustainable Energy Reviews,2013,28:317-330.
[43]  Zhang J,Tian Y,Cui Y,et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresource Technology,2013,132:57-63.
[44]  Wang Z,Chen D,Song X,et al. Study on the combined sewage sludge pyrolysis and gasification process:Mass and energy balance[J]. Environmental Technology,2012,33(22):2481-2488.
[45]  Menendez J A,Dominguez A,Inguanzo M,et al. Microwave pyrolysis of sewage sludge:Analysis of the gas fraction[J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):657-667.
[46]  Dominguez A,Menedez J A,Inguanzo M,et al. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge[J]. Fuel Processing Technology,2005,86(9):1007-1020.
[47]  Zuo W,Tian Y,Ren N Q. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge[J]. Waste Management,2011,31(6):1321-1326.
[48]  Lu T,Yuan Hao R,Zhou Shun G,et al. Advances in Environmental Science and Engineering,Pts 1-6:On the Pyrolysis of Sewage Sludge:The Influence of Pyrolysis Temperature on Biochar,Liquid and Gas Fractions[M]. Iranpour R,Zhao J,Wang A,et al. USA,2012:3412-3420.
[49]  Agrafioti E,Bouras G,Kalderis D,et al. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2013,101:72-78.
[50]  Méndez A,Terradillos M,Gascó G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures[J]. Journal of Analytical and Applied Pyrolysis,2013,102:124-130.
[51]  Chen T,Zhang Y,Wang H,et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource Technology,2014,164:47-54.
[52]  Mendez A,Gomez A,Paz-Ferreiro J,et al. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil[J]. Chemosphere,2012,89(11):1354-1359.
[53]  管志超,胡艳军,钟英杰. 不同升温速率下城市污水污泥热解特性及动力学研究[J]. 环境污染与防治,2012,34(3):35-39.
[54]  Menendez J A,Arenillas A,Fidalgo B,et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology,2010,91(1):1-8.
[55]  Shao J,Yan R,Chen H,et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis[J]. Energy & Fuels,2008,22(1):38-45.
[56]  Mendez A,Tarquis A M,Saa-Requejo A,et al. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil[J]. Chemosphere,2013,93(4):668-676.
[57]  蔡炳良,辛玲玲. 污泥热解技术特性分析[J]. 中国环保产业,2011(8):51-54.
[58]  Zhang J,Tian Y,Zhu J,et al. Characterization of nitrogen transformation during microwave-induced pyrolysis of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis,2014,105:335-341.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133