全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

MNPs@ZIFs催化剂的研究进展

DOI: 10.16085/j.issn.1000-6613.2015.09.015

Keywords: 沸石咪唑酯骨架材料,金属纳米颗粒,复合材料,制备,表征,催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

概括了将金属纳米颗粒(MNPs)嵌入或装载到沸石咪唑酯骨架材料(ZIFs)上构筑MNPs@ZIFs催化剂的方法,包括化学气相沉积法、固体研磨法、溶液浸渍法和自组装法,对其优缺点进行了讨论,并重点介绍了自组装法在制备MNPs@ZIFs催化剂时MNPs空间分布的可调控性;介绍了MNPs@ZIFs催化剂微结构的表征手段,特别是分析MNPs在ZIFs中空间分布的方法;探讨了MNPs@ZIFs催化剂在耦合、氧化、还原等反应中的催化性能,分析了其择形催化功能。在此基础上,提出了今后MNPs@ZIFs催化剂研究的主要方向是制备新型高稳定性且具有大孔径的ZIF材料、精确控制MNPs在ZIFs中的空间分布以及开发MNPs@ZIFs催化剂的工业化制备方法。

References

[1]  Shen J,Shan W,Zhang Y H,et al. A novel catalyst with high activity for polyhydric alcohol oxidation:Nanosilver/zeolite film[J]. Chem. Commun.,2004,24:2880-2881.
[2]  Zhao M Q,Crooks R M. Homogeneous hydrogenation catalysis with monodisperse,dendrimer-encapsulated Pd and Pt nanoparticles[J]. Angew. Chem. Int. Ed.,1999,38(3):364-366. 3.0.CO;2-L target="_blank">
[3]  Tsai S H,Liu Y H,Wu P L,et al. Preparation of Au-Ag-Pd trimetallic nanoparticles and their application as catalysts[J]. Mater. Chem.,2003,13(5):978-980.
[4]  Cushing B L,Kolesnichenko V L,O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev.,2004,104(9):3893-3946.
[5]  White R J,Luque R,Budarin V L,et al. Supported metal nanoparticles on porous materials. Methods and applications[J]. Chem. Soc. Rev.,2009,38(2):481-494.
[6]  Kreno L E,Leong K,Farha O K,et al. Metal-organic framework materials as chemical sensors[J]. Chem. Rev.,2012,112(2):1105-1125.
[7]  Corma A,García H,Xamena F X L I,et al. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem. Rev.,2010,110(8):4606-4655.
[8]  肖冰心,刘杰,王双,等. 离子热合成金属-有机骨架材料最新研究进展[J]. 化工进展,2014,33(9):2363-2371.
[9]  Pichon A,Lazuen-Garay A,James S L. Solvent-free synthesis of a microporous metal-organic framework[J]. Cryst. Eng. Comm.,2006,8(3):211-214.
[10]  Czaja A U,Trukhanb N,Mueller U. Industrial applications of metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1284-1293.
[11]  Li Z Q,Qiu L G,Xu T,et al. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure:An efficient and environmentally friendly method[J]. Mater. Lett.,2009,63(1):78-80.
[12]  刁红敏,任素贞. 沸石咪唑酯骨架结构材料合成及性能研究进展[J]. 化工进展,2010,29(9):1658-1665. 浏览
[13]  Huang X C,Lin Y Y,Zhang J P,et al. Ligand-directed strategy for zeolite-type metal-organic frameworks:Zinc(Ⅱ) imidazolates with unusual zeolitic topologies[J]. Angew. Chem. Int. Edit.,2006,45(10):1557-1559.
[14]  Wang B,Cote A P,Furukawa H,et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature,2008,453(7192):207-212.
[15]  康小珍,石琪,董晋湘. 微球状ZIFs材料(TIF-5Zn)的制备及稳定性[J]. 化工进展,2013,32(7):1604-1607.
[16]  Tian Y Q,Yao S Y,Gu D,et al. Cadmium imidazolate frameworks with polymorphism,high thermal stability,and a large surface area[J]. Eur. J. Chem.,2010,16(4):1137-1141.
[17]  Banerjee R,Phan A,Wang B,et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943.
[18]  Zhang J P,Zhu A X,Lin R B,et al. Pore surface tailored SOD-type metal-organic zeolites[J]. Adv. Mater.,2011,23(10):1268-1271.
[19]  Morris W,Doonan C J,Furukawa H,et al. Crystals as molecules:Postsynthesis covalent functionalization of zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc.,2008,130(38):12626-12627.
[20]  Morris W,Leung B,Furukawa H,et al. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc.,2010,132(32):11006-11008.
[21]  Phan A,Doonan C J,Uribe-romo F J,et al. Synthesis,structure,and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Acc. Chem. Res.,2010,43(1):58-67.
[22]  Tian Y Q,Zhao Y M,Chen Z X,et al. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs):Synthesis and crystal structures of zinc(Ⅱ) imidazolate polymers with zeolitic topologies[J]. Chem. Eur. J.,2007,13(15):4146-4154.
[23]  Wang Z Q,Cohen S M. Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1315-1329.
[24]  Banerjee R,Furukawa H,Britt D,et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc.,2009,131(11):3875-3877.
[25]  Esken D,Turner S,Lebedev O I,et al. Au@ZIFs:Stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks,ZIFs[J]. Chem. Mater.,2010,22(23):6393-6401.
[26]  Aijaz A,Karkamkar A,Choi Y J,et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:A double solvents approach[J]. J. Am. Chem. Soc.,2012,134(34):13926-13929.
[27]  Jiang H L,Liu B,Akita T,et al. Au@ZIF-8:CO oxidation over gold nanoparticles deposited to metal-organic framework[J]. J. Am. Chem. Soc.,2009,131(32):11302-11303.
[28]  Lu G,Li S Z,Guo Z,et al. Imparting functionality to a metal-organic framework by controlled nanoparticle encapsulation[J]. Nat. Chem.,2012,4(4):310-316.
[29]  Sabo M,Henschel A,Froede H,et al. Solution infiltration of palladium into MOF-5:synthesis,physisorption and catalytic properties[J]. Mater. Chem.,2007,17(36):3827-3832.
[30]  Zahmakiran M. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8):Synthesis,structural properties and catalytic performance[J]. Dalton Trans.,2012,41(41):12690-12696.
[31]  Esken D,Noei H,Wang Y M,et al. ZnO@ZIF-8:Stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption[J]. J. Mater. Chem.,2011,21(16):5907-5915.
[32]  Feng P L,Perry J J,Nikodemski S,et al. Assessing the purity of metal-organic frameworks using photoluminescence:MOF-5,ZnO quantum dots,and framework decomposition[J]. J. Am. Chem.,2010,132(44):15487-15489.
[33]  Maeda K,Sakamoto N,Ikade T,et al. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light[J]. Chem. Eur. J.,2010,16(26):7750-7759.
[34]  Esken D,Turner S,Wiktor C,et al. GaN@ZIF-8:Selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework[J]. J. Am. Chem. Soc.,2011,133(41):16370-16373.
[35]  Li R,Ren X Q,Ma H W,et al. Nickel-substituted zeolitic imidazolate frameworks for time resolved alcohol sensing and photocatalysis under visible light[J]. J. Master. Chem. A.,2014,2(16):5274-5279.
[36]  EI-Shall M S,Abdelsayed V,Khder A E R S,et al. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101[J]. Mater. Chem.,2009,19(41):7625-7631.
[37]  Hwang Y K,Hong D Y,Chang J S,et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J]. Angew. Chem. Int. Ed.,2008,47(22):4144-4148.
[38]  Liu M M,Fan B B,Shi X F,et al. Ru/ZIF-8 with a chiral modifier for asymmetric hydrogenation of acetophenone[J]. Cat. Comm.,2013,42:20-24.
[39]  Xia B Q,Cao N,Dai H M,et al. Bimetallic nickel-rhodium nanoparticles supported on ZIF-8 as highly efficient catalysts for hydrogen generation from hydrazine in alkaline solution[J]. Chem. Cat. Chem.,2014,6(9):2549-2552.
[40]  Singh A K,Xu Q. Metal-organic framework supported bimetallic Ni-Pt nanoparticles as high-performance catalysts for hydrogen generation from hydrazine in aqueous solution[J]. Chem. Cat. Chem.,2013,5(10):3000-3004.
[41]  Wang P,Zhao J,Li X B,et al. Assembly of ZIF nanostructures around free Pt nanoparticles:Efficient size-selective catalysts for hydrogenation of alkenes under mild conditions[J]. Chem. Commum.,2013,49(32):3330-3332.
[42]  Kuo C H,Tang Y,Chou L Y,et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. J. Am. Chem. Soc.,2012,134(35):14345-14348.
[43]  Lin L,Zhang T,Zhang X F,et al. New Pd/SiO2@ZIF-8 core-shell catalyst with selective,antipoisoning,and antileaching properties for the hydrogenation of alkenes[J]. Ind. Eng. Chem. Res.,2014,53(27):10906-10913.
[44]  Zhao Y A,Liu M M,Fan B B,et al. Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde[J]. Catal. Commun.,2014,57:119-123.
[45]  Dang T T,Zhu Y H,Ngiam J S Y,et al. Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation[J]. ACS Catal.,2013,3(6):1406-1410.
[46]  Dang T T,Chen A Q,Seayad A M. An Efficient synthesis of Weinreb amides and ketones via palladium nanoparticles on ZIF-8 catalysed carbonylative coupling[J]. RSC Adv.,2014,4(57):30019-30027.
[47]  Ishida T,Nagaoka M,Akita T,et al. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols[J]. Chem. Eur. J.,2008,14(28):8456-8460.
[48]  Jiang H L,Akita T,Ishida T,et al. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework[J]. J. Am. Chem. Soc.,2011,133(5):1304-1306.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133