全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IgG4-Related Fibrotic Diseases from an Immunological Perspective: Regulators out of Control?

DOI: 10.1155/2012/789164

Full-Text   Cite this paper   Add to My Lib

Abstract:

Patients with autoimmune pancreatitis have a striking polyclonal elevation of total IgG4 in serum. This observation has been confirmed and extended to other fibrotic conditions (that are therefore called IgG4-related disease) but as yet remains unexplained. The affected tissue contains many IgG4-producing plasma cells embedded in a fibrotic matrix originating from activated mesenchymal (stellate) cells. We propose that the process results from an unusual interaction between two regulatory systems: the regulatory arm of the immune system (including Bregs) and the tissue repair regulatory components orchestrated by the activated stellate cell. This interaction results in ongoing mutual activation, generating TGFbeta, IL10, and vitamin D. This environment suppresses most immune reactions but stimulates the development of IgG4-producing plasma cells. 1. IgG4 Production in IRD IgG4-related disease (IRD, see Box 1) is a group of diseases with disparate symptoms, but sharing a common pathophysiology, which has only recently been recognized as a new disease entity [1]. IRD is characterized by massive infiltration of the affected organ by IgG4-positive plasma cells. This infiltration coincides with a disruption of the organization of the tissue and thus of tissue function. The extent of the plasmacytic tissue reaction in IRD is such that the first impression is often that of a tumor. While the prototypic site of IgG4 production in IRD is the pancreas, many other sites in the body can be involved, for example, the salivary and tear glands, reminding of Sj?gren’s syndrome. However, in IRD, the ducts usually remain largely intact, and secretion by the glands is less severely affected [2]. It is not at all unusual to find several organs to be involved simultaneously (for details, see Box 1). Box 1: IgG4-related disease (IRD). A 5–50-time elevation of total IgG4 levels is found in patients with IRD. This results in a markedly increased IgG4/IgG ratio, both for serum immunoglobulin levels and for plasma cells in the affected tissue. It is not clear if the increased levels of IgG4 contribute to the pathology of IRD. So far, convincing support for the hypothesis that (auto-) antibody activity of IgG4 is driving the pathology is lacking. Several candidate autoantibodies have been suggested in IRD, such as antibodies directed against pancreatic trypsin inhibitor, lactoferrin, and carbonic anhydrase, mainly in patients with pancreatic involvement [3]. These antibodies were mostly not of the IgG4 subclass. Since they are present in only a small part of the patients, their

References

[1]  H. Umehara, K. Okazaki, Y. Masaki et al., “A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details,” Modern Rheumatology, vol. 22, no. 1, pp. 1–14, 2012.
[2]  H. Takahashi, M. Yamamoto, T. Tabeya et al., “The immunobiology and clinical characteristics of IgG4 related diseases,” Journal of Autoimmunity. In press.
[3]  K. Okazaki, K. Uchida, M. Koyabu, H. Miyoshi, and M. Takaoka, “Recent advances in the concept and diagnosis of autoimmune pancreatitis and IgG4-related disease,” Journal of Gastroenterology, vol. 46, no. 3, pp. 277–288, 2011.
[4]  T. Watanabe, K. Yamashita, S. Fujikawa et al., “Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis,” Arthritis and Rheumatism, vol. 64, no. 3, pp. 914–924, 2012.
[5]  R. Akitake, T. Watanabe, C. Zaima et al., “Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4-related sclerosing disease,” Gut, vol. 59, no. 4, pp. 542–545, 2010.
[6]  A. Khosroshahi, D. B. Bloch, V. Deshpande, and J. H. Stone, “Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease,” Arthritis and Rheumatism, vol. 62, no. 6, pp. 1755–1762, 2010.
[7]  A. Khosroshahi, M. N. Carruthers, V. Deshpande, S. Unizony, D. B. Bloch, and J. H. Stone, “Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients,” Medicine, vol. 91, no. 1, pp. 57–66, 2012.
[8]  R. C. Aalberse, R. Van Der Gaag, and J. Van Leeuwen, “Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response,” Journal of Immunology, vol. 130, no. 2, pp. 722–726, 1983.
[9]  R. C. Aalberse, S. O. Stapel, J. Schuurman, and T. Rispens, “Immunoglobulin G4: an odd antibody,” Clinical and Experimental Allergy, vol. 39, no. 4, pp. 469–477, 2009.
[10]  P. Bruhns, B. Iannascoli, P. England et al., “Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses,” Blood, vol. 113, no. 16, pp. 3716–3725, 2009.
[11]  M. H. Tao, R. I. F. Smith, and S. L. Morrison, “Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation,” Journal of Experimental Medicine, vol. 178, no. 2, pp. 661–667, 1993.
[12]  S. M. Canfield and S. L. Morrison, “The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region,” Journal of Experimental Medicine, vol. 173, no. 6, pp. 1483–1491, 1991.
[13]  M. van der Neut Kolfschoten, J. Schuurman, M. Losen et al., “Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange,” Science, vol. 317, no. 5844, pp. 1554–1557, 2007.
[14]  J. S. Van Der Zee, P. Van Swieten, and R. C. Aalberse, “Inhibition of complement activation by IgG4 antibodies,” Clinical and Experimental Immunology, vol. 64, no. 2, pp. 415–422, 1986.
[15]  J. Punnonen, G. Aversa, B. G. Cocks et al., “Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3730–3734, 1993.
[16]  T. Platts-Mills, J. Vaughan, S. Squillace, J. Woodfolk, and R. Sporik, “Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study,” Lancet, vol. 357, no. 9258, pp. 752–756, 2001.
[17]  P. Jeannin, S. Lecoanet, Y. Delneste, J. F. Gauchat, and J. Y. Bonnefoy, “IgE versus IgG4 production can be differentially regulated by IL-10,” Journal of Immunology, vol. 160, no. 7, pp. 3555–3561, 1998.
[18]  Y. Zen, T. Fujii, K. Harada et al., “Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis,” Hepatology, vol. 45, no. 6, pp. 1538–1546, 2007.
[19]  H. Miyoshi, K. Uchida, T. Taniguchi et al., “Circulating na?ve and CD4+CD regulatory T cells in patients with autoimmune pancreatitis,” Pancreas, vol. 36, no. 2, pp. 133–140, 2008.
[20]  F. E. Lund and T. D. Randall, “Effector and regulatory B cells: modulators of CD4+ T cell immunity,” Nature Reviews Immunology, vol. 10, no. 4, pp. 236–247, 2010.
[21]  W. Van de Veen, personal communication.
[22]  P. G. Calkhoven, M. Aalbers, V. L. Koshte et al., “Relationship between IgG1 and IgG4 antibodies to foods and the development of IgE antibodies to inhalant allergens. II. Increased levels of IgG antibodies to foods in children who subsequently develop IgE antibodies to inhalant allergens,” Clinical and Experimental Allergy, vol. 21, no. 1, pp. 99–107, 1991.
[23]  V. L. Koshte, M. Aalbers, P. G. Calkhoven, and R. C. Aalberse, “The potent IgG4-inducing antigen in banana is a mannose-binding lectin, BanLec-I,” International Archives of Allergy and Immunology, vol. 97, no. 1, pp. 17–24, 1992.
[24]  V. L. Koshte, W. Van Dijk, M. E. Van der Stelt, and R. C. Allbers, “Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac (banana),” Biochemical Journal, vol. 272, no. 3, pp. 721–726, 1990.
[25]  V. Coelho, S. Krysov, A. M. Ghaemmaghami et al., “Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18587–18592, 2010.
[26]  S. T. Saab, J. L. Hornick, C. D. Fletcher, S. J. Olson, and C. M. Coffin, “IgG4 plasma cells in inflammatory myofibroblastic tumor: inflammatory marker or pathogenic link,” Modern Pathology, vol. 24, no. 4, pp. 606–612, 2011.
[27]  H. Yamamoto, H. Yamaguchi, S. Aishima et al., “Inflammatory myofibroblastic tumor versus igg4-related sclerosing disease and inflammatory pseudotumor: a comparative clinicopathologic study,” American Journal of Surgical Pathology, vol. 33, no. 9, pp. 1330–1340, 2009.
[28]  M. Zaidan, P. Cervera-Pierot, S. De Seigneux et al., “Evidence of follicular T-cell implication in a case of IgG4-related systemic disease with interstitial nephritis,” Nephrology Dialysis Transplantation, vol. 26, no. 6, pp. 2047–2050, 2011.
[29]  A. Khosroshahi and J. H. Stone, “A clinical overview of IgG4-related systemic disease,” Current Opinion in Rheumatology, vol. 23, no. 1, pp. 57–66, 2011.
[30]  J. R. Stone, “Aortitis, periaortitis, and retroperitoneal fibrosis, as manifestations of IgG4-related systemic disease,” Current Opinion in Rheumatology, vol. 23, no. 1, pp. 88–94, 2011.
[31]  R. P. Sah and S. T. Chari, “Serologic issues in IgG4-related systemic disease and autoimmune pancreatitis,” Current Opinion in Rheumatology, vol. 23, no. 1, pp. 108–113, 2011.
[32]  Y. Sato, K. Notohara, M. Kojima, K. Takata, Y. Masaki, and T. Yoshino, “IgG4-related disease: Historical overview and pathology of hematological disorders: review Article,” Pathology International, vol. 60, no. 4, pp. 247–258, 2010.
[33]  T. Kisseleva and D. A. Brenner, “Mechanisms of fibrogenesis,” Experimental Biology and Medicine, vol. 233, no. 2, pp. 109–122, 2008.
[34]  S. B. Lee and R. Kalluri, “Mechanistic connection between inflammation and fibrosis,” Kidney International, vol. 78, no. 119, pp. S22–S26, 2010.
[35]  A. Bellini and S. Mattoli, “The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses,” Laboratory Investigation, vol. 87, no. 9, pp. 858–870, 2007.
[36]  R. A. Reilkoff, R. Bucala, and E. L. Herzog, “Fibrocytes: emerging effector cells in chronic inflammation,” Nature Reviews Immunology, vol. 11, no. 6, pp. 427–435, 2011.
[37]  T. A. Wynn and L. Barron, “Macrophages: master regulators of inflammation and fibrosis,” Seminars in Liver Disease, vol. 30, no. 3, pp. 245–257, 2010.
[38]  M. V. Apte, P. S. Haber, T. L. Applegate et al., “Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture,” Gut, vol. 43, no. 1, pp. 128–133, 1998.
[39]  K. Wake, “Perisinusoidal stellate cells (fat-storing cells, interstitial cell, lipocytes), their related structure in and around the liver sinusoids, and vitamin A storing cells in extrahepatic organs,” International Review of Cytology, vol. 66, pp. 303–353, 1980.
[40]  D. F. Brand?o, F. S. Ramalho, A. L. C. Martinelli, S. Zucoloto, and L. N. Z. Ramalho, “Relationship between plasma cells and hepatic stellate cells in autoimmune hepatitis,” Pathology Research and Practice, vol. 206, no. 12, pp. 800–804, 2010.
[41]  M. Apte, R. Pirola, and J. Wilson, “The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells,” Antioxidants and Redox Signaling, vol. 15, no. 10, pp. 2711–2722, 2011.
[42]  P. Meister, E. Konrad, and N. Hoehne, “Incidence and histological structure of the storiform pattern in benign and malignant fibrous histiocytomas,” Virchows Archiv, vol. 393, no. 1, pp. 93–101, 1981.
[43]  V. Brinkmann, C. H. Heusser, J. Baer, E. Kilchherr, and F. Erard, “Interferon-alpha suppresses the capacity of T cells to help antibody production by human B cells,” Journal of Interferon Research, vol. 12, no. 4, pp. 267–274, 1992.
[44]  I. Turesson, “Distribution of immunoglobulin containing cells in human bone marrow and lymphoid tissues,” Acta Medica Scandinavica, vol. 199, no. 4, pp. 293–304, 1976.
[45]  R. Pabst, M. W. Russell, and P. Brandtzaeg, “Tissue distribution of lymphocytes and plasma cells and the role of the gut,” Trends in Immunology, vol. 29, no. 5, pp. 206–208, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133