全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

微纳米流控芯片传感器研究及其在环境检测中的应用

, PP. 182-186

Keywords: 微流控芯片,试纸条生物传感器,环境监测

Full-Text   Cite this paper   Add to My Lib

Abstract:

与传统生物传感器相比,微纳米流体生物传感器在减少样品使用剂量,实现高通量、快速检测、特异性检测,以及简化实验操作等方面都显示出无可比拟的优越性。本文所涉及的微纳米的生物传感器大体上可以分成两大类第一类是常规的微纳米流控生物传感器(简称微流控芯片),通常以硅、玻璃以及高分子聚合物作为基材;第二类则是最近兴起的试纸条生物传感器,其基材为纸质。本文从以下几方面对当前微流体生物传感器的研究与应用进行总结微流体生物传感器的基本理论,材料特征与制作工艺方面,以及在环境监测领域的典型性应用,最后对基于各种不同工艺技术制作的微流体生物传感器在技术方面的难点和应用上的局限性进行简要分析。

References

[1]  Whitesides G M.The origins and the future of microfluidics[J].Nature, 2006, 442: 368-373.
[2]  Bhushan B.Springer Handbook of Nanotechnology[M]. Berlin: Springer, 2010.
[3]  林炳承.微纳米流控芯片实验室[M].北京:科学出版社,2013.
[4]  Martinez A W, Phillips S.T, Butte M J, et al.Patterned paper as a platform for inexpensive, low-volume, portable bioassays[J].Angew.Chem.Int.Ed., 2007, 46: 1318-1320,.
[5]  Yager P, Edwards T, Fu E, et al.Microfluidic diagnostic technologies for global public health[J].Nature, 2006,442: 412-418.
[6]  Bae J, Beta C, Bodenschatz E.Rapid switching of chemical signals in microfluidic devices[J].Lab Chip., 2009, 9,3059-3065.
[7]  Li D. Electrokinetics in Microfluidics[M].New York: Academic Press, 2004.
[8]  Lauga E, Brenner M, Stone H.Handbook of Experimental Fluid Mechanics[M].Berlin: Springer-Verlag, 2007.
[9]  Wang Y, Bhushan B.Boundary slip and nanobubble study in micro/nanofluidicswithatomic force microscope[J].Soft Matter., 2010, 6:29-66.
[10]  Rothstein J P.Slip on superhydrophobicsurfaces[J]. Annu. Rev. Fluid Mech., 2010, 42: 89-109.
[11]  Cottin-Bizonne Steinberger C, Kleimann P, Charlaix E.High friction on a bubble mattress[J].Nat.Mater., 2007, 6: 665-668.
[12]  Hyv?luoma J, Harting J.Slip flow over structured surfaces with entrappedmicrobubbles[J].Phys.Rev.Lett., 2008, 100: 246001.
[13]  姜成山,杨宜民,章云, 等.微流体力学中边界条件的探讨[J].机床与液压,2001(2): 25-27.
[14]  Squires T M,Messinger R J, Manalis S R.Making it stick: Convection, reaction and diffusion in surface-based biosensors[J].Nature Biotechnology, 2008,26(4): 417-426.
[15]  Fu E, Lutz B, Kauffman P, et al.Transport in two-dimensional paper networks[J].Lab Chip., 2010,10:918-920.
[16]  郑小林,鄢佳文,胡宁, 等.微流控芯片的材料与加工方法研究进展[J].传感器与微系统,2011,30(6):1-7.
[17]  Marquette Macanovic C, Polychronakos C, Lawrence M F. Impedance-baseddetection of DNA sequences using a silicon transducer with PNA as the probe layer[J].Nucleic Acids Res., 2004,32(2):e20.
[18]  Durand N F Y, Renaud P.Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nano channel[J].Lab Chip., 2009,9:319-324.
[19]  伍择希,张卫平,陈俊杰, 等.集成电极的PDMS——玻璃微流控芯片的制备[J].加工、测量与设备,2012,49(1):56-61.
[20]  Schwartz B, Robbins H.Chemical etching of silicon III.A temperature study in the acid system[J]. J. Electrochem. Soc., 1961, 108(4): 365-372.
[21]  Easley C J, Karlinsey J M, Bienvenue J M, et al.A fully integrated microfluidic genetic analysis system with samplein-answer-out capability[J].Proc.Natl.Acad.Sci.USA., 2006,103: 19272-19277.
[22]  Guo Y B, Li H, Reddy K, et al.OptofluidicFabry-Pérot cavity biosensor with integrated flow-through micro-/nanochannels[J].Appl.Phys.Lett.,2011,98:041104.
[23]  Gervais L, Hitzbleck M, Delamarche E.Capillary-driven multiparametric microfluidic chips for one-step immunoassays[J].Biosens.Bioelectron., 2011,27:64-70.
[24]  Rogers J A, Nuzzo R G.Recent progress in soft lithography[J].Materials Today, 2005, 8(2): 50-56.
[25]  Quake S R, Scherer A.From micro- to nanofabrication with soft materials[J].Science, 2000, 290(5496): 1536-1540.
[26]  L. PaguiriganandD.J.Beebe.From the cellular perspective: Exploring differences in the cellular baseline in macroscale and microfluidic cultures[J].Integr.Biol., 2009,1:182-195.
[27]  Young E W K, Berthier E, Guckenberger D J, et al.Rapid prototyping of arrayed microfluidic systems in polystyrenefor cell-based assays[J].Anal.Chem., 2011,83: 1408-1417.
[28]  Fan Y, Chen X, Trigg A D, et al. Detection of MicroRNAsusing target-guided formation of conducting polymer nanowires in nanogaps[J].J.Am.Chem.Soc., 2007,129: 5437-5443.
[29]  崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社,2013.
[30]  辛龙涛,陈华,夏之宁, 等.微流控分析芯片制作中的低温键合技术[J].纳米器件与技术,2004(11):7-11.
[31]  Durand N F Y, Renaud P.Label-free determination of protein-surfaceinteraction kinetics by ionic conductance inside a nanochannel[J].Lab Chip.,2009,9:319-324.
[32]  Martinez A W, Philips S T, Whitesides G M,et al. Diagnostics for the developing world: microfluidic paper-based analytical devices[J].Anal.Chem., 2010,82:3-10.
[33]  Martinez A W, Phillips S T, Butte M J, et al.Patterned paper as a platform for inexpensive, low-volume, portable bioassays[J]. Angew.Chem.Int.Ed., 2007,46:1318-1320.
[34]  Dungchai W, Chailapakul O, Henry C S.Electrochemical detection for paper-based microfluidics[J].Anal.Chem., 2009,81: 5821-5826.
[35]  Li X, Ballerini D R, Shen W. A perspective on paper-based microfluidics: Current status and future trends[J]. Biomicrofluidics, 2012, 6: 011301.
[36]  Carrilho E, Martinez A W, Whitesides G M.Understanding wax printing: Asimplemicropatterningprocess for paper-based microfluidics[J].Anal.Chem., 2009,81: 7091-7095.
[37]  Li X, Tian J, Garnier G, et al.Fabrication of paper-based microfluidic sensors by printing[J].Colloids Surf.B, 2010,76: 564-570.
[38]  Martinez W, Phillips S T, Whitesides G M.Three-dimensional microfluidic devices fabricated in layered paper and tape[J]. Proc. Natl. Acad.Sci.USA., 2008,105: 19606-19611.
[39]  Meathrel W G, Malik R.Materials next-generation IVD products advanced pressure-sensitive adhesives lay foundation for conventional components for bonding, adhesives are being formulated to deliver increased functionality to diagnostic devices[J].European Medical Device Technology, 2011, 2(1): 19.
[40]  Schilling K M, Lepore A L, Kurian J A, et al.Fully enclosed microfluidic paper-based analytical devices[J]. Anal. Chem., 2012,84:1579-1585.
[41]  Gertsch J C, Noblitt S D, Cropek D M, et al. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis[J].Anal.Chem., 2010,82(9):3426-3429.
[42]  Tian K, Dasgupta P K, Anderson T A.Determination of trace perchlorate in high-salinity water samples by ion chromatography with on-line preconcentration and preelution[J].Anal.Chem., 2003,75:701-706.
[43]  Merulla D, Buffi N, Beggah S, et al.Bioreporters and biosensors for arsenic detection.Biotechnological solutions for a world-wide pollution problem[J]. Curr. Opin. Biotechnol., 2013,24:534-541.
[44]  Lafleur J P, Senkbeil S, Jensen T G, et al.Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants[J].Lab Chip., 2012,12: 4651-4656.
[45]  Lisha K P, Pradeep T.Enhanced visual detection of pesticides using gold nanoparticles[J].J.Environ.Sci.Heal.B, 2009, 44: 697-705.
[46]  Martinez N A, Schneider R J, Messina G A, et al.Modified paramagnetic beads in a microfluidic system for the determination of ethinylestradiol (EE2) in river water samples[J].Biosens.Bioelectron., 2010, 25: 1376-1381.
[47]  王虎,魏俊峰,郑国侠,等.微流控芯片在水环境污染分析中的应用[J].应用生态学报,2014,25(4):1231-1238.
[48]  Eaidkong T, Mungkarndee R, Phollookin C, et al. Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds[J].J.Mater.Chem., 2012, 22: 5970-5977.
[49]  Wang L M, Lu D L, Wang J, et al.A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos[J]. Biosens. Bioelectron., 2011, 26: 2835-2840.
[50]  Hossain S M, Brennan J D.β-Galactosidase-based colorimetric paper sensor for determination of heavy metals[J]. Anal. Chem., 2011,83: 8772-8778.
[51]  Yetisen K, Akram M S, Lowe C R.Paper-based microfluidic point-of-care diagnostic devices[J].Lab Chip., 2013, 13: 2210-2251.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133