全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

金属-有机骨架材料在气体膜分离中的研究进展

DOI: 10.16085/j.issn.1000-6613.2015.08.001, PP. 2907-2915

Keywords: 金属-有机骨架材料膜,气体分离,计算化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属-有机骨架材料(metal-organicframeworks,MOF)由于具有高比表面积、大孔隙率、功能性孔道结构以及种类多样性等特征,在储气、分离、催化、载药和光学等领域受到重视。其中,制备纯MOF膜或基于MOF的混合基质膜(mixedmatrixmembranes,MMMs)并用于气体分离,被认为具有潜在的应用前景。目前为止,实验合成的MOF材料种类已有两万种,为了快速筛选出合适的MOF材料作为膜材料,计算化学的方法可以极大地缩减MOF膜的研究周期,并有助于指导实验合成高效膜分离材料。本文分别从计算和实验两方面介绍了MOF膜在气体分离中的研究进展,分析表明,MOF膜的研究总体上向功能性更强、稳定性更高的方向发展,但是利用计算方法建立MOF膜的构效关系还存在一定的难度。因此,建立MOF膜的结构与性能表征的新概念、新方法,并利用MOF膜的结构-性能关系指导实验合成高稳定性、低成本的膜材料将是未来MOF膜的发展方向。

References

[1]  Zornoza B, Tellez C, Coronas J, et al. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential[J]. Microporous Mesoporous Mater., 2013, 166: 67-78.
[2]  Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(2): 165-185.
[3]  Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714.
[4]  Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev., 2011, 112(2): 869-932.
[5]  Zhang R, Ji S, Wang N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew. Chem. Int. Ed., 2014, 53(37): 9775-9779.
[6]  Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations: Promises and challenges[J]. Ind. Eng. Chem. Res., 2012, 51(5): 2179-2199.
[7]  曹发. 金属-有机骨架材料膜的制备及其气体分离性能的研究[D]. 北京: 北京化工大学, 2012.
[8]  吴栋. 金属-有机骨架材料吸附分离和膜分离性能研究[D]. 北京: 北京化工大学, 2013.
[9]  阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009, 60(4): 805-819. 浏览
[10]  Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Trans., 2012, 41(46): 14003-14027.
[11]  Keskin S, Sholl D S. Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5[J]. Ind. Eng. Chem. Res., 2008, 48(2): 914-922.
[12]  Keskin S, Liu J, Johnson J K, et al. Atomically detailed models of gas mixture diffusion through Cu-BTC membranes[J]. Microporous Mesoporous Mater., 2009, 125(1): 101-106.
[13]  Atci E, Erucar I, Keskin S. Adsorption and transport of CH4, CO2, H2 mixtures in a bio-MOF material from molecular simulations[J]. J. Phys. Chem. C, 2011, 115(14): 6833-6840.
[14]  Liu J, Keskin S, Sholl D S, et al. Molecular simulations and theoretical predictions for adsorption and diffusion of CH4/H2 and CO2/CH4 mixtures in ZIFs[J]. J. Phys. Chem. C, 2011, 115(25): 12560-12566.
[15]  Keskin S. Atomistic simulations for adsorption, diffusion, and separation of gas mixtures in zeolite imidazolate frameworks[J]. J. Phys. Chem. C, 2010, 115(3): 800-807.
[16]  Watanabe T, Keskin S, Nair S, et al. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5[J]. Phys. Chem. Chem. Phys., 2009, 11(48): 11389-11394.
[17]  Atci E, Keskin S. Understanding the potential of zeolite imidazolate framework membranes in gas separations using atomically detailed calculations[J]. J. Phys. Chem. C, 2012, 116(29): 15525-15537.
[18]  Keskin S. High CO2 selectivity of a microporous metal-imidazolate framework: A molecular simulation study[J]. Ind. Eng. Chem. Res., 2011, 50(13): 8230-8236.
[19]  Hert?g L, Bux H, Caro J, et al. Diffusion of CH4 and H2 in ZIF-8[J]. J. Membr. Sci., 2011, 377(1): 36-41.
[20]  Wu D, Maurin G, Yang Q, et al. Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture[J]. J. Mater. Chem. A, 2014, 2(6): 1657-1661.
[21]  Ozturk T N, Keskin S. Computational screening of porous coordination networks for adsorption and membrane-based gas separations[J]. J. Phys. Chem. C, 2014, 118(25): 13988-13997.
[22]  Yang T, Xiao Y, Chung T S. Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification[J]. Energy Environ. Sci., 2011, 4(10): 4171-4180.
[23]  Song Q, Nataraj S K, Roussenova M V, et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation[J]. Energy Environ. Sci., 2012, 5(8): 8359-8369.
[24]  Guo X, Huang H, Ban Y, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. J. Membr. Sci., 2015.478: 130-139.
[25]  Xiao Y, Guo X, Huang H, et al. Synthesis of MIL-88B (Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity[J]. RSC Adv., 2015, 5(10): 7253-7259.
[26]  Ma J, Ying Y, Yang Q, et al. Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2/CH4 mixture[J]. Chem. Commun., 2015, 51(20): 4249-4251.
[27]  Li T, Pan Y, Peinemann K V, et al. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers[J]. J. Membr. Sci., 2013, 425: 235-242.
[28]  Thompson J A, Chapman K W, Koros W J, et al. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes[J]. Microporous Mesoporous Mater., 2012, 158: 292-299.
[29]  Yang T, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor[J]. Int. J. Hydrogen Energy, 2013, 38(1): 229-239.
[30]  Askari M, Chung T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. J. Membr. Sci., 2013, 444: 173-183.
[31]  Zhang C, Dai Y, Johnson J R, et al. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations[J]. J. Membr. Sci., 2012, 389: 34-42.
[32]  Dai Y, Johnson J R, Karvan O, et al. Ultem?/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations[J]. J. Membr. Sci., 2012, 401: 76-82.
[33]  Bae T H, Lee J S, Qiu W, et al. A high performance gas separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angew. Chem. Int. Ed., 2010, 49(51): 9863-9866.
[34]  Yang T, Chung T S. Room temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation[J]. J. Mater. Chem. A, 2013, 1(19): 6081-6090.
[35]  Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nat. Mater., 2015, 14(1): 48-55.
[36]  Cao L, Tao K, Huang A, et al. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation[J]. Chem. Commun., 2013, 49(76): 8513-8515.
[37]  Hu J, Cai H, Ren H, et al. Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption[J]. Ind. Eng. Chem. Res., 2010, 49(24): 12605-12612.
[38]  Krishna R, van Baten J M. In silico screening of metal-organic frameworks in separation applications[J]. Phys. Chem. Chem. Phys., 2011, 13(22): 10593-10616.
[39]  Keskin S. Comparing performance of CPO and IRMOF membranes for gas separations using atomistic models[J]. Ind. Eng. Chem. Res., 2010, 49(22): 11689-11696.
[40]  Haldoupis E, Nair S, Sholl D S. Efficient calculation of diffusion limitations in metal organic framework materials: A tool for identifying materials for kinetic separations[J]. J. Am. Chem. Soc., 2010, 132(21): 7528-7539.
[41]  Gurdal Y, Keskin S. Atomically detailed modeling of metal organic frameworks for adsorption, diffusion, and separation of noble gas mixtures[J]. Ind. Eng. Chem. Res., 2012, 51(21): 7373-7382.
[42]  Thornton A W, Dubbeldam D, Liu M S, et al. Feasibility of zeolitic imidazolate framework membranes for clean energy applications[J]. Energy Environ. Sci., 2012, 5(6): 7637-7646.
[43]  Keskin S, Sholl D S. Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification[J]. Energy Environ. Sci., 2010, 3(3): 343-351.
[44]  Erucar I, Keskin S. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations[J]. Ind. Eng. Chem. Res., 2011, 50(22): 12606-12616.
[45]  Erucar I, Keskin S. Computational screening of metal organic frameworks for mixed matrix membrane applications[J]. J. Membr. Sci., 2012, 407-408: 221-230.
[46]  Yilmaz G, Keskin S. Molecular modeling of MOF and ZIF-filled MMMs for CO2/N2 separations[J]. J. Membr. Sci., 2014, 454: 407-417.
[47]  仲崇立, 刘大欢, 阳庆元. 金属-有机骨架材料的构效关系及设计[M]. 北京: 科学出版社, 2013.
[48]  Huang A, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angew. Chem. Int. Ed., 2010, 49(29): 4958-4961.
[49]  Huang A, Chen Y, Wang N, et al. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation[J]. Chem. Commun., 2012, 48(89): 10981-10983.
[50]  Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. J. Am. Chem. Soc., 2010, 132(44): 15562-15564.
[51]  Li Y S, Liang F Y, Bux H, et al. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity[J]. Angew. Chem. Int. Ed., 2010, 49(3): 548-551.
[52]  Liu Y, Zeng G, Pan Y, et al. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties[J]. J. Membr. Sci., 2011, 379(1-2): 46-51.
[53]  Zhang C, Xiao Y, Liu D, et al. A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture[J]. Chem. Commun., 2012, 49(6): 600-602.
[54]  Nan J, Dong X, Wang W, et al. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support[J]. Langmuir, 2011, 27(8): 4309-4312.
[55]  Hermes S, Schr?der F, Chelmowski R, et al. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3- terminated self-assembled monolayers on Au (111)[J]. J. Am. Chem. Soc., 2005, 127(40): 13744-13745.
[56]  Hermes S, Zacher D, Baunemann A, et al. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers[J]. Chem. Mater., 2007, 19(9): 2168-2173.
[57]  Yoo Y, Lai Z, Jeong H K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth[J]. Microporous Mesoporous Mater., 2009, 123(1): 100-106.
[58]  Liu Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous Mesoporous Mater., 2009, 118(1-3): 296-301.
[59]  Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. J. Am. Chem. Soc., 2009, 131(44): 16000-16001.
[60]  Li Y S, Bux H, Feldhoff A, et al. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes[J]. Adv. Mater., 2010, 22(30): 3322-3326.
[61]  Bux H, Feldhoff A, Cravillon J, et al. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation[J]. Chem. Mater., 2011, 23(8): 2262-2269.
[62]  Huang A, Wang N, Kong C, et al. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance[J]. Angew. Chem. Int. Ed., 2012, 51(42): 10551-10555.
[63]  Huang A, Caro J. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity[J]. Angew. Chem. Int. Ed., 2011, 50(21): 4979-4982.
[64]  Dong X, Huang K, Liu S, et al. Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: Defect formation and elimination[J]. J. Mater. Chem., 2012, 22(36): 19222-19227.
[65]  Huang K, Dong Z, Li Q, et al. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors[J]. Chem. Commun., 2013, 49(87): 10326-10328.
[66]  Bux H, Chmelik C, van Baten J M, et al. Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling[J]. Adv. Mater., 2010, 22(42): 4741-4743.
[67]  Cao F, Zhang C, Xiao Y, et al. Helium recovery by a Cu-BTC metal-organic framework membrane[J]. Ind. Eng. Chem. Res., 2012, 51(34): 11274-11278.
[68]  Gao H, Hu Y, Xuan Y, et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures[J]. Science, 2014, 346(6215): 1352-1356.
[69]  Zhang X, Liu Y, Kong L, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. J. Mater. Chem. A, 2013, 1(36): 10635-10638.
[70]  Zhang F, Zou X, Gao X, et al. Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability[J]. Adv. Funct. Mater., 2012, 22(17): 3583-3590.
[71]  Zornoza B, Seoane B, Zamaro J M, et al. Combination of MOFs and zeolites for mixed-matrix membranes[J]. Chem. Phys. Chem., 2011, 12(15): 2781-2785.
[72]  Zornoza B, Martinez-Joaristi A, Serra-Crespo P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chem. Commun., 2011, 47(33): 9522-9524.
[73]  Car A, Stropnik C, Peinemann K V. Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation[J]. Desalination, 2006, 200(1-3): 424-426.
[74]  Sorribas S, Zornoza B, Téllez C, et al. Mixed matrix membranes comprising silica-(ZIF-8) core-shell spheres with ordered meso-microporosity for natural-and bio-gas upgrading[J]. J. Membr. Sci., 2014, 452: 184-192.
[75]  Perez E V, Balkus K J, Ferraris J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations[J]. J. Membr. Sci., 2009, 328(1-3): 165-173.
[76]  Ordonez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes[J]. J. Membr. Sci., 2010, 361(1-2): 28-37.
[77]  Zhang Y, Musselman I H, Ferraris J P, et al. Gas permeability properties of Matrimid Membranes? containing the metal-organic framework Cu-BPY-HFS[J]. J. Membr. Sci., 2008, 313(1-2): 170-181.
[78]  Shahid S, Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe (BTC)[J]. J. Membr. Sci., 2014, 459: 33-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133