全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

二氧化硅溶胶体系的电导行为

DOI: 10.16085/j.issn.1000-6613.2015.08.029, PP. 3093-3098

Keywords: 二氧化硅,胶体,粒度分布,电导率,比表面积,ζ电位

Full-Text   Cite this paper   Add to My Lib

Abstract:

二氧化硅溶胶的导电性与其储存稳定性及纳米材料的制备和应用密切相关。本文通过St?ber法制备了分散性较好的非晶型二氧化硅纳米微球,用激光粒度分析仪、高分辨透射电子显微镜和X射线衍射仪对微粒进行了表征。通过电导率的变化监测了不同条件下的溶胶-凝胶动力学过程,并详细地研究了影响二氧化硅溶胶体系电导行为的各个因素。实验结果表明,氨水用量对溶胶-凝胶过程的平衡时间有很大影响,氨水用量少,体系平衡时间短,反之亦然。二氧化硅的浓度、粒径、分散介质的温度、pH值和电解质浓度对溶胶体系的电导率都有显著的影响,并得出了二氧化硅的浓度和体系温度与电导率之间呈线性关系,同时发现,硅溶胶体系的电导率与胶体粒子总的比表面积成正比,与颗粒表面的ζ电位也密切相关。

References

[1]  李良, 梁汉东, 张海军, 等. 硅溶胶应用评述[J]. 无机盐工业, 2006, 38(8): 8-10.
[2]  Snyder K L, Holmes H R, van Wagner M J, et al. Development of vapor deposited silica sol-gel particles for use as a bioactive materials system[J]. Journal of Biomedical Materials Research Part A, 2013, 101(6): 1682-1693.
[3]  廖婵娟, 赵健全, 于萍, 等. 不同结构二氧化硅对聚偏氟乙烯超滤膜的性能影响[J]. 化工进展, 2011, 30(s1): 277-281.
[4]  Atalay S, Ma Y, Qian S Z. Analytical model for charge properties of silica particles[J]. Journal of Colloid and Interface Science, 2014, 425: 128-130.
[5]  Lu F, Wu S H, Hung Y, et al. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles[J]. Small, 2009, 5(12): 1408-1413.
[6]  Leroy P, Devau N, Revil A, et al. Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles[J]. Journal of Colloid and Interface Science, 2013, 410: 81-93.
[7]  Barisik M, Atalay S, Beskok A, et al. Size dependent surface charge properties of silica nanoparticles[J]. Journal of Physical Chemistry C, 2014, 118(4): 1836-1842.
[8]  Abbas Z, Labbez C, Nordholm S, et al. Size-dependent surface charging of nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(15): 5715-5723.
[9]  Leroy P, Tournassat C, Bizi M. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles[J]. Journal of Colloid and Interface Science, 2011, 356(2): 442-453.
[10]  Crespy A, Bolèveb A, Revil A. Influence of the Dukhin and Reynolds numbers on the apparent zeta potential of granular porous media[J]. Journal of Colloid and Interface Science, 2007, 305(1): 188-194.
[11]  Lyklema J, Minor M. On surface conduction and its role in electrokinetics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140(1): 33-41.
[12]  董鹏. 单分散二氧化硅颗粒的研究进展[J]. 自然科学进展, 2000, 10(3): 201-207.
[13]  王金忠, 赵岩, 张彩碚. 单分散球形SiO2形成过程的电导率和粘度变化[J]. 硅酸盐通报, 2003(1): 88-91.
[14]  St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
[15]  Giesche H. Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics[J]. Journal of the European Ceramic Society, 1994, 14(3): 189-204.
[16]  Razo D A S, Pallavidino L, Garrone E, et al. A version of St?ber synthesis enabling the facile prediction of silica nanospheres size for the fabrication of opal photonic crystals[J]. Journal of Nanoparticle Research, 2008, 10(7): 1225-1229.
[17]  Kim J, Lawler D F. Characteristics of zeta potential distribution in silica particles[J]. Bulletin of the Korean Chemical Society, 2005, 26(7): 1083-1089.
[18]  Ceram Research Ltd. Zeta potential[J/OL].[2001-10-09]. http: //www. azom. com/article. aspx?ArticleID=935.
[19]  Elimelech M, Jia X D, Gregory J, et al. Particle Deposition and Aggregation: Measurement, Modelling and Simulation[M]. U. K., Oxford: Butterworth-Heinemann Ltd., 1998: 23-32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133