Bi D, Chu D, Zhu P, et al. Utilization of dry distiller's grain and solubles as nutrient supplement in the simultaneous saccharification and ethanol fermentation at high solids loading of corn stover[J]. Biotechnology Letters, 2011, 33(2): 273-276.
[3]
Imman S, Arnthong J, Burapatana V, et al. Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment[J]. Applied Biochemistry and Biotechnology, 2013, 170(8): 1982-1995.
[4]
Adsul M G, Singhvi M S, Gaikaiwari S A, et al. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(6): 4304-4312.
[5]
Dong H, Bao J. Metabolism: Biofuel via biodetoxification[J]. Nature Chemical Biology, 2010, 6(5): 316-318.
[6]
Qing Q, Hu R, He Y C, et al. Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve biomass enzymatic hydrolysis conversion[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 5275-5286.
[7]
Chu D, Zhang J, Bao J. Simultaneous saccharification and ethanol fermentation of corn stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1[J]. BioEnergy Research, 2012, 5(4): 1020-1026.
[8]
Jing X, Zhang X, Bao J. Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis[J]. Applied Biochemistry and Biotechnology, 2009, 159(3): 696-707.
Fu D, Mazza G. Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid[J]. Bioresource Technology, 2011, 102(17): 8003-8010.
[11]
Leschine S B. Cellulose degradation in anaerobic environments[J]. Annual Reviews in Microbiology, 1995, 49(1): 399-426.
[12]
Gerez J C C, Gerez M D C A, Miller J. Process and installation for obtaining ethanol by the continuous acid hydrolysis of cellulosic materials: US, 4529699[P]. 1985-7-16.
Tai C, Keshwani D. Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems[J]. Applied Biochemistry and Biotechnology, 2014, 172(5): 2628-2639.
[15]
Farone W, Cuzens J E. Strong acid hydrolysis of cellulosic and hemicellulosic materials[J]. Biotechnology Advances, 1997, 15(3): 798-798.
[16]
Arifin Z B, Teoh T C. Conversion of cellulosic materials into glucose for use in bioethanol production: US, 13/146, 207[P]. 2010-1-29.
[17]
He Y C, Gong L, Liu F, et al. Waste biogas residue from cassava dregs as carbon source to produce Galactomyces sp. Cczu11-1 cellulase and its enzymatic saccharification[J]. Applied Biochemistry and Biotechnology, 2014, 173(4): 894-903.
[18]
He Y C, Xia D Q, Ma C L, et al. Enzymatic saccharification of sugarcane bagasse by N-methylmorpholine-N-oxide-tolerant cellulose from a newly isolated Galactomyces sp. CCZU11-1[J]. Bioresource Technology, 2013, 135: 18-22.
[19]
Zhang Z, O'Hara I M, Doherty W O S. Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions[J]. Bioresource Technology, 2012, 120: 149-156.
Zhang Y H P, Cui J, Lynd L R, et al. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure[J]. Biomacromolecules, 2006, 7(2): 644-648.
Li H, Xu J. Optimization of microwave-assisted calcium chloride pretreatment of corn stover[J]. Bioresource Technology, 2013, 127: 112-118.
[26]
Jackowiak D, Bassard D, Pauss A, et al. Optimisation of a microwave pretreatment of wheat straw for methane production[J]. Bioresource Technology, 2011, 102(12): 6750-6756.
[27]
Xu J, Chen H, Kádár Z, et al. Optimization of microwave pretreatment on wheat straw for ethanol production[J]. Biomass and Bioenergy, 2011, 35(9): 3859-3864.