全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

Ni基甲烷二氧化碳重整催化剂研究进展

DOI: 10.16085/j.issn.1000-6613.2015.08.019

Keywords: 甲烷,重整,催化剂,积炭,烧结,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于甲烷二氧化碳重整将两种温室气体甲烷和二氧化碳转化为可利用的合成气,因此近二十年以来引起了越来越多研究者的关注。其中,Ni基催化剂由于其较高的活性和较低的成本得到了广泛的研究。本文将甲烷二氧化碳重整Ni基催化剂分为负载型和非负载型两大类分别综述了它们的研究进展。针对反应条件下的Ni基催化剂因积炭和烧结引起的失活问题,本文介绍了引起这两个问题的原因,并概括了抑制失活并提升Ni基催化剂活性和稳定性的5条途经,包括选择性钝化活性金属、增强Ni颗粒分散性、控制催化剂的酸碱性、减小Ni颗粒的尺寸以及提高Ni颗粒稳定性。最后指出,设计和制备颗粒小而且稳定的催化剂是同时解决催化剂积炭和烧结两大问题的关键。

References

[1]  Pakhare D, Spivey J. A review of dry(CO2)reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43: 7813-7837.
[2]  Wei J, Lglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts[J]. Journal of Catalysis, 2004, 224(2): 370-383.
[3]  Ferreira-Aparicio P, Rodriguez-Ramos I, Anderson J, et al. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts[J]. Applied Catalysis A: General, 2000, 202(2): 183-196.
[4]  Bradford M, Vannice M. CO2 Reforming of CH4[J]. Catalysis Reviews: Science and Engineering, 1999, 41(1): 1-42.
[5]  Bradford M, Vannice M. CO2 reforming of CH4 over supported Pt catalysts[J]. Journal of Catalysis, 1998, 173(1): 157-171.
[6]  路勇, 邓存, 丁雪加, 等. 担载型钴金属催化剂上甲烷与二氧化碳转化制合成气[J]. 催化学报, 1995(6): 447-452.
[7]  Campbell C, Peden C. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.
[8]  Su Y, Pan K, Chang M. Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4917-4925.
[9]  Zhu J, Peng X, Yao L. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J]. International Journal of Hydrogen Energy, 2013, 38(1): 117-126.
[10]  Hu Y, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming[J]. Advances in Catalysis, 2004, 48: 297-345.
[11]  Alvero R, Odriozola J, Trillo J. et al. Lanthanide oxides: Preparation and ageing[J]. Journal of the Chemical Society, Dalton Transactions, 1984, 1: 87-91.
[12]  Kambolis A, Matralis H, Trovarelli A, et al. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane[J]. Applied Catalysis A: General, 2010, 377(1-2): 16-26.
[13]  Donphai W, Faungnawakij K, Chareonpanich M. Effect of Ni-CNTs/mesocellular silica composite catalysts on carbon dioxide reforming of methane[J]. Applied Catalysis A: General, 2014, 475: 16-26.
[14]  Ma Q, Wang D, Wu M, et al. Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming[J]. Fuel, 2013, 108: 430-438.
[15]  Zhang M, Ji S, Hu L, et al. Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO2[J]. Chinese Journal of Catalysis, 2006, 27(9): 777-781.
[16]  Liu D, Quek X, Wah H, et al. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts[J]. Catalysis Today, 2009, 148(3-4): 243-250.
[17]  Zhang S, Muratsugu S, Ishiguro N, et al. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catalysis, 2013, 3(8): 1855-1864.
[18]  Xu L, Miao Z, Song H, et al. Significant roles of mesostructure and basic modifier for ordered mesoporous Ni/CaO-Al2O3 catalyst towards CO2 reforming of CH4[J]. Catalysis Science & Technology, 2014, 4: 1759-1770.
[19]  付晓娟, 曾尚红, 苏海全. 用于甲烷二氧化碳重整新型催化材料的研究进展[J]. 化工进展, 2012, 31(s1): 168-175.
[20]  李贺, 梁奇, 唐水花, 等. 预还原催化剂LaNiO3, La4Ni3O10, La3Ni2O7和La2NiO4催化分解CH4制碳纳米管的研究[J]. 化学学报, 2001, 59(8): 1236-1240.
[21]  Liu B, Au C. Carbon deposition and catalyst stability over La2NiO4/y-Al2O3 during CO2 reforming of methane to syngas[J]. Applied Catalysis A: General, 2003, 244(1): 181-195.
[22]  Gallego G, Marín J, Batiot-Dupeyrat C, et al. Influence of Pr and Ce in dry methane reforming catalysts produced from La1-xAxNiO3-δ perovskites[J]. Applied Catalysis A: General, 2009, 369(1-2): 97-103.
[23]  Sickafus K, Wills J, Grimes N. Structure of Spinel[J]. Journal of the American Ceramic Society, 1999, 82(12): 3279-3292.
[24]  Guo J, Lou H, Zheng X. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007, 45(6): 1314-1321.
[25]  García-Diéguez M, Pieta I, Herrera M, et al. Improved Pt-Ni nanocatalysts for dry reforming of methane[J]. Applied Catalysis A: General, 2010, 377(1-2): 191-199.
[26]  Sousa F, Sousa H, Oliveira A, et al. Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3201-3212.
[27]  Ikkour K, Sellam D, Kiennemann A, et al. Activity of Ni substituted Ca-La-hexaaluminate catalyst in dry reforming of methane[J]. Catalysis Letters, 2009, 132(1-2): 213-217.
[28]  Hu Y, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion to syngas[J]. Catalysis Reviews: Science and Engineering, 2002, 44(3): 423-453.
[29]  Hu Y. Solid-solution catalysts for CO2 reforming of methane[J]. Catalysis Today, 2009, 148(3-4): 206-211.
[30]  Zanganeh R, Rezaei M, Zamaniyan A. Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(7): 3012-3018.
[31]  Hou Z, Gao J, Guo J, et al. Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor[J]. Journal of Catalysis, 2007, 250(2): 331-341.
[32]  Rostrup-Nielsen J, Trimm D. Mechanisms of carbon formation on nickel-containing catalysts[J]. Journal of Catalysis, 1977, 48(1-3): 155-165.
[33]  Wang S, Lu G. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art[J]. Energy Fuels, 1996, 10(4): 896-904.
[34]  Efstathiou A, Kladi A, Tsipouriari V, et al. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts: II. A steady-state tracing analysis: Mechanistic aspects of the carbon and oxygen reaction pathways to form CO[J]. Journal of Catalysis, 1996, 158(1): 64-75.
[35]  Souza M, Aranda D, Schmal M. Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2[J]. Industrial & Engineering Chemistry Research, 2002, 41(18): 4681-4685.
[36]  Thomas W, Andrew T, Sivakumar R, et al. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening?[J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730.
[37]  Gadalla A, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2[J]. Chemical Engineering Science, 1988, 43(11): 3049-3062.
[38]  Rostrup-Nielsen J. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane[J]. Journal of Catalysis, 1984, 85(1): 31-43.
[39]  Hou Z, Yokota O, Tanaka T, et al. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane[J]. Applied Surface Science, 2004, 233(1-4): 58-68
[40]  Liu C, Ye J, Jiang J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. Chem. Cat. Chem., 2011, 3(3): 529-541
[41]  Damyanova S, Pawelec B, Arishtirova K, et al. MCM-41 supported PdNi catalysts for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2009, 92(3-4): 250-261.
[42]  Lv X, Chen J, Tan Y, et al. A highly dispersed nickel supported catalyst for dry reforming of methane[J]. Catalysis Communications, 2012, 20: 6-11.
[43]  Liu Z, Zhou J, Cao K, et al. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide[J]. Applied Catalysis B: Environmental, 2012, 125: 324-330.
[44]  Masai M. Reforming by carbon dioxide and steam over supported Pd, Pt and Rh catalysts[M]. Kado H, Miyake A, et al. // Biddy B, Chang C, Howe R, et al. Methane Conversion, Proceedings of a Symposium on the Production of Fuels and Chemicals from Natural Gas, Amsterdam: Elsevier, 1988: 67-71.
[45]  Helveg S, López-Cartes C, Sehested J, et al. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427: 426-429.
[46]  Baudouin D, Szeto K, Laurent P, et al. Nickel-silicide colloid prepared under mild conditions as a versatile Ni precursor for more efficient CO2 reforming of CH4 catalysts[J]. Journal of the American Chemical Society, 2012, 134(51): 20624-20627.
[47]  Luna A, Iriarte M. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst[J]. Applied Catalysis A: General, 2008, 343(1-2): 10-15.
[48]  Aasberg-Petersen K, Hansen J, Christensen T, et al. Technologies for large-scale gas conversion[J]. Applied Catalysis A: General, 2001, 221(1-2): 379-387.
[49]  Ashcroft A, Cheetham A, Green M, et a1. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature, 1991, 352: 225-226.
[50]  Hu Y, Ruckenstein E. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4[J]. Catalysis Letters, 43(1-2): 71-77.
[51]  包信和. 纳米限域体系的催化特性[J]. 中国科学 B 辑: 化学, 2009, 39(10): 1125-1133.
[52]  Du X, Zhang D, Gao R, et al. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane[J]. Chemical Communications, 2013, 49: 6770-6772.
[53]  Gould T, Izar A, Weimer A, et al. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions[J]. ACS Catalysis, 2014, 4(8): 2714-2717.
[54]  Kim D, Sim J, Lee J, et al. Carbon dioxide reforming of methane over mesoporous Ni/SiO2[J]. Fuel, 2013, 112: 111-116.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133