Kim S K, Lee S H, Lee J Y, et al. An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor[J]. J. Am. Chem. Soc., 2004, 126: 16499-16506.
[2]
Matsushita M, Meijler M M, Wirsching P, et al. A blue fluorescent antibody-cofactor sensor for mercury[J]. Org. Lett., 2005, 7: 4943-4946.
[3]
Chae M Y, Czarnik A W. Fluorometric chemodosimetry. Mercury(Ⅱ) and silver(I) indication in water via enhanced fluorescence signaling[J]. J. Am. Chem. Soc., 1992, 114: 9704-9705.
[4]
Cho D G, Sessler J L. Modern reaction-based indicator systems[J]. Chem. Soc. Rev., 2009, 38: 1647-1662.
[5]
Du J, Hu M, Fan J, et al. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media[J]. Chem. Soc. Rev., 2012, 41: 4511-4535.
de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997, 97: 1515-1566.
[10]
Kim J S, Quang D T. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007, 107: 3780-3799.
[11]
Zhang G, Zhang D, Yin S, et al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: New selective chemodosimeters for Hg(Ⅱ) ion[J]. Chem. Commun., 2005, 41: 2161-2163.
[12]
Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion[J]. Chem. Commun., 2005, 41: 3156-3158.
[13]
Leng B, Zou L, Jiang J, et al. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles[J]. Sensors and Actuat. B, 2009, 140: 162-169.
[14]
Lee M H, Lee S W, Kim S H, et al. Nanomolar Hg(Ⅱ) detection using Nile blue chemodosimeter in biological media[J]. Org. Lett., 2009, 11: 2101-2104.
[15]
Ros-Lis J, Marcos M D, Martínez-Má?ez R, et al. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions[J]. Angew. Chem., Int. Ed., 2005, 44: 4405-4407.
[16]
Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. J. Am. Chem. Soc., 2005, 127: 16760-16761.
[17]
Cheng X, Li S, Zhong A, et al. New fluorescent probes for mercury(Ⅱ) with simple structure[J]. Sensor and Actuat B: Chemical, 2011, 157: 57-63.
[18]
Tang Y, He F, Yu M, et al. A reversible and highly selective fluorescent sensor for mercury (Ⅱ) using poly(thiophene)s that contain thymine moieties[J]. Macromol. Rapid Commun., 2006, 27: 389-392.
[19]
Fan L, Zhang Y, Jones W E. Design and synthesis of fluorescence “turn-on” chemosensors based on photoi nduced electron transfer in conjugated polymers[J]. Macromolecules, 2005, 38: 2844-2849.
[20]
Yao Z, Bai H, Li C, et al. Analyte -induced aggregation of conjugated polyelectrolytes : Role of the charged moieties and its sensing application[J]. Chem. Commun., 2010, 46: 5094-5096.
[21]
Lv F, Feng X, Tang H, et al. Development of film sensors based on conjugated polymers for copper (Ⅱ) ion detection[J]. Adv. Funct. Mater., 2011, 21: 845-850.
[22]
Lee S, Park K, Kim K, et al. Activatable imaging probes with amplified fluorescent signals[J]. Chem. Commun., 2008, 44: 4250-4260.
[23]
Chen C, Chen Y, Chen C, et al. Dipyrrole carboxamide derived selective ratiometric probes for cyanide ion[J]. Org. Lett., 2006, 8: 5053-5056.
[24]
Qian G, Li X, Wang Z. Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide[J]. J. Mater. Chem., 2009, 19: 522-530.
[25]
Liu Z, Wang X, Yang Z, et al. Rational design of a dual chemosensor for cyanide anion sensing based on dicyanovinyl-substituted benzofurazan[J]. J. Org. Chem., 2011, 76: 10286-10290.
[26]
Hong S J, Yoo J, Kim S H, et al. b-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion[J]. Chem. Commun., 2009, 45: 189-191.
[27]
Divya K P, Sreejith S, Balakrishna B, et al. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples[J]. Chem. Commun., 2010, 46: 6069-6071.
[28]
Cheng X, Li S, Jia H, et al. Fluorescent and colorimetric probes for mercury(Ⅱ): Tunable structures of electron donor and p-conjugated bridge[J]. Chem. Eur. J., 2012, 18: 1691-1699.
[29]
Amendola V, Fabbrizzi L. Anion receptors that contain metals as structural units[J]. Chem. Commun., 2009, 38: 513-531.
[30]
Gale P A, García-Garrido S E, Garric J. Anion receptors based on organic frameworks: Highlights from 2005 and 2006[J]. Chem. Soc. Rev., 2008, 37: 151-190.
[31]
Gunnlaugsson T, Glynn M, Tocci G M, et al. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors[J]. Coord. Chem. Rev., 2006, 250: 3094-3117.
[32]
Cametti M, Rissanen K. Recognition and sensing of fluoride anion[J]. Chem. Commun., 2009, 45: 2809-2829.
[33]
Cheng X, Li Q, Li C, et al. Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(Ⅱ)[J]. Chem. Eur. J., 2011, 17: 7276-7281.