全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

脱硫化反应在汞离子传感器中的应用进展

DOI: 10.16085/j.issn.1000-6613.2015.08.03, PP. 2925-2931

Keywords: 有机化合物,传感器,选择性,化学反应,汞离子

Full-Text   Cite this paper   Add to My Lib

Abstract:

汞离子具有独特的嗜硫性,因此脱硫化反应被广泛地应用于汞离子传感器的设计之中,并表现出超高的选择性。本文在前期研究工作的基础上,结合相关文献报道,综述了脱硫化反应在汞离子化学传感器中的应用,包括汞离子与硫代羰基化合物发生脱硫反应、汞诱导硫脲衍生物脱硫化氢生成胍类化合物的反应、汞诱导的方酸化合物脱硫醇反应、汞促进氨基硫脲转化为二唑反应以及缩硫醛化合物的脱保护反应。分析文献表明,该领域的研究目前仍存在一些尚未解决的问题有些化学反应的反应条件较苛刻;有些化学反应在室温下反应速率较慢;一些传感体系对汞离子检测的灵敏度较低。因此,需要更好地利用化学反应,探索并优化传感条件,为反应型汞离子传感器的发展提供更多契机。

References

[1]  Kim S K, Lee S H, Lee J Y, et al. An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor[J]. J. Am. Chem. Soc., 2004, 126: 16499-16506.
[2]  Matsushita M, Meijler M M, Wirsching P, et al. A blue fluorescent antibody-cofactor sensor for mercury[J]. Org. Lett., 2005, 7: 4943-4946.
[3]  Chae M Y, Czarnik A W. Fluorometric chemodosimetry. Mercury(Ⅱ) and silver(I) indication in water via enhanced fluorescence signaling[J]. J. Am. Chem. Soc., 1992, 114: 9704-9705.
[4]  Cho D G, Sessler J L. Modern reaction-based indicator systems[J]. Chem. Soc. Rev., 2009, 38: 1647-1662.
[5]  Du J, Hu M, Fan J, et al. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media[J]. Chem. Soc. Rev., 2012, 41: 4511-4535.
[6]  冷冰, 田禾. 反应型汞离子光化学传感器[J]. 化学进展, 2010, 22(5): 837-844.
[7]  Jun M E, Roy B, Ahn K H. “Turn-on” fluorescent sensing with “reactive” probes[J]. Chem. Commun., 2011, 47: 7583-7601.
[8]  舒杰明, 高云玲, 姚克俭, 等. 香豆素类荧光传感器检测金属离子的研究进展[J]. 化工进展, 2014, 33(12): 3144-3156. 浏览
[9]  de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997, 97: 1515-1566.
[10]  Kim J S, Quang D T. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007, 107: 3780-3799.
[11]  Zhang G, Zhang D, Yin S, et al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: New selective chemodosimeters for Hg(Ⅱ) ion[J]. Chem. Commun., 2005, 41: 2161-2163.
[12]  Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion[J]. Chem. Commun., 2005, 41: 3156-3158.
[13]  Leng B, Zou L, Jiang J, et al. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles[J]. Sensors and Actuat. B, 2009, 140: 162-169.
[14]  Lee M H, Lee S W, Kim S H, et al. Nanomolar Hg(Ⅱ) detection using Nile blue chemodosimeter in biological media[J]. Org. Lett., 2009, 11: 2101-2104.
[15]  Ros-Lis J, Marcos M D, Martínez-Má?ez R, et al. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions[J]. Angew. Chem., Int. Ed., 2005, 44: 4405-4407.
[16]  Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. J. Am. Chem. Soc., 2005, 127: 16760-16761.
[17]  Cheng X, Li S, Zhong A, et al. New fluorescent probes for mercury(Ⅱ) with simple structure[J]. Sensor and Actuat B: Chemical, 2011, 157: 57-63.
[18]  Tang Y, He F, Yu M, et al. A reversible and highly selective fluorescent sensor for mercury (Ⅱ) using poly(thiophene)s that contain thymine moieties[J]. Macromol. Rapid Commun., 2006, 27: 389-392.
[19]  Fan L, Zhang Y, Jones W E. Design and synthesis of fluorescence “turn-on” chemosensors based on photoi nduced electron transfer in conjugated polymers[J]. Macromolecules, 2005, 38: 2844-2849.
[20]  Yao Z, Bai H, Li C, et al. Analyte -induced aggregation of conjugated polyelectrolytes : Role of the charged moieties and its sensing application[J]. Chem. Commun., 2010, 46: 5094-5096.
[21]  Lv F, Feng X, Tang H, et al. Development of film sensors based on conjugated polymers for copper (Ⅱ) ion detection[J]. Adv. Funct. Mater., 2011, 21: 845-850.
[22]  Lee S, Park K, Kim K, et al. Activatable imaging probes with amplified fluorescent signals[J]. Chem. Commun., 2008, 44: 4250-4260.
[23]  Chen C, Chen Y, Chen C, et al. Dipyrrole carboxamide derived selective ratiometric probes for cyanide ion[J]. Org. Lett., 2006, 8: 5053-5056.
[24]  Qian G, Li X, Wang Z. Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide[J]. J. Mater. Chem., 2009, 19: 522-530.
[25]  Liu Z, Wang X, Yang Z, et al. Rational design of a dual chemosensor for cyanide anion sensing based on dicyanovinyl-substituted benzofurazan[J]. J. Org. Chem., 2011, 76: 10286-10290.
[26]  Hong S J, Yoo J, Kim S H, et al. b-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion[J]. Chem. Commun., 2009, 45: 189-191.
[27]  Divya K P, Sreejith S, Balakrishna B, et al. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples[J]. Chem. Commun., 2010, 46: 6069-6071.
[28]  Cheng X, Li S, Jia H, et al. Fluorescent and colorimetric probes for mercury(Ⅱ): Tunable structures of electron donor and p-conjugated bridge[J]. Chem. Eur. J., 2012, 18: 1691-1699.
[29]  Amendola V, Fabbrizzi L. Anion receptors that contain metals as structural units[J]. Chem. Commun., 2009, 38: 513-531.
[30]  Gale P A, García-Garrido S E, Garric J. Anion receptors based on organic frameworks: Highlights from 2005 and 2006[J]. Chem. Soc. Rev., 2008, 37: 151-190.
[31]  Gunnlaugsson T, Glynn M, Tocci G M, et al. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors[J]. Coord. Chem. Rev., 2006, 250: 3094-3117.
[32]  Cametti M, Rissanen K. Recognition and sensing of fluoride anion[J]. Chem. Commun., 2009, 45: 2809-2829.
[33]  Cheng X, Li Q, Li C, et al. Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(Ⅱ)[J]. Chem. Eur. J., 2011, 17: 7276-7281.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133