全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

金属有机骨架(MOFs)为壳的核壳结构材料研究进展

DOI: 10.16085/j.issn.1000-6613.2015.03.029, PP. 774-783

Keywords: 金属有机骨架,核壳,吸附,分离,催化剂,复合材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

MOFs核壳结构材料是近十几年来化工材料领域的研究热点,其中MOFs可作核,亦可作壳。本文从不同的核出发综述了以MOFs为壳的核壳结构材料的合成方法,如外延生长法、后合成修饰法等;概述了其展现出优于核层与壳层的特性(如选择性分离、催化性、磁性等)及以MOFs为壳的核壳结构材料在气体吸附、催化剂、磁性分离等应用上的研究,这给MOFs复合材料的产业化带来很大的潜力;而内核主要包括单质金属及非金属类内核、氧化物类内核、MOFs类内核;最后对MOFs为壳的核壳结构复合材料合成方法的改进和拓展、结构均一稳定、多功能化的发展作了展望。

References

[1]  Lauhon L J, Gudiksen M S, Wang D, et al.Epitaxial core-shell and core-multishell nanowire heterostructures[J].Nature, 2002, 420(6911):57-61.
[2]  Sun X, Li Y.Colloida l carbon spheres and their core/shell structures with noble-metal nanoparticles[J].Angewandte Chemie International Editin, 2004, 43(5):597-601.
[3]  Cao Y, Jin R, Mirkin C A.DNA-modified core-shell Ag/Au nanoparticles[J].Journal of the American Chemical Society, 2001, 123(32):7961-7962.
[4]  Deng Y, Qi D, Deng C, et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J].Journal of the American Chemical Society, 2007, 130(1):28-29.
[5]  Li J J, Wang Y A, Guo W, et al.Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J].Journal of the American Chemical Society, 2003, 125(41):12567-12575.
[6]  Wang Z, Liu Y, Jiang J G, et al.Synthesis of ZSM-5 zeolite hollow spheres with a core/shell structure[J].Journal of Materials Chemistry, 2010, 20(45):10193-10199.
[7]  Bouizi Y, Rouleau L, Valtchev V P.Factors controlling the formation of core-shell zeolite-zeolite composites[J].Chemistry of Materials, 2006, 18(20):4959-4966.
[8]  Nie R, Lei H, Pan S, et al.Core-shell structured CuO-ZnO@ H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J].Fuel, 2012, 96:419-425.
[9]  Ke F, Qiu L G, Yuan Y P, et al.Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell[J].Journal of Materials Chemistry, 2012, 22(19):9497-9500.
[10]  Hwang Y K, Hong D Y, Chang J S, et al.Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J].Angewandte Chemie International Edition, 2008, 47(22):4144-4148.
[11]  Phan N T S, Le K K A, Phan T D.MOF-5 as an efficient heterogeneous catalyst for friedel-crafts alkylation reactions[J].Applied Catalysis A:General, 2010, 382(2):246-253.
[12]  Zhao Z, Li Z, Lin Y.Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)[J].Industrial & Engineering Chemistry Research, 2009, 48(22):10015-10020.
[13]  Gassensmith J J, Furukawa H, Smaldone R A, et al.Strong and reversible binding of carbon dioxide in a green metal-organic framework[J].Journal of the American Chemical Society, 2011, 133(39):15312-15315.
[14]  Dybtsev D N, Chun H, Yoon S H, et al.Microporous manganese formate:A simple metal-organic porous material with high framework stability and highly selective gas sorption properties[J].Journal of the American Chemical Society, 2004, 126(1):32-33.
[15]  Liédana N, Galve A, Rubio C S, et al.CaF@ZIF-8:One-step encapsulation of caffeine in MOF[J].ACS Applied Materials & Interfaces, 2012, 4(9):5016-5021.
[16]  Sun C Y, Qin C, Wang C G, et al.Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery[J].Advanced Materials, 2011, 23(47):5629-5632.
[17]  Yavuz C T, Mayo J, William W Y, et al.Low-field magnetic separation of monodisperse Fe3O4 nanocrystals[J].Science, 2006, 314(5801):964-967.
[18]  Taberna P L, Mitra S, Poizot P, et al.High rate capabilities Fe3O4-Based Cu nano-architectured electrodes for lithium-ion battery applications[J].Nature materials, 2006, 5(7):567-573.
[19]  Ueda K, Tabata H, Kawai T.Magnetic and electric properties of transition-metal-doped ZnO films[J].Applied Physics Letters, 2001, 79(7):988-990.
[20]  Yang L Y, Dong S Y, Sun J H, et al.Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst[J].Journal of Hazardous Materials, 2010, 179(1):438-443.
[21]  Faustini M, Kim J, Jeong G Y, et al.Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets[J].Journal of the American Chemical Society, 2013, 135(39):14619-14626.
[22]  Sugikawa K, Furukawa Y, Sada K.Sers-active metal-organic frameworks embedding gold nanorods[J].Chemistry of Materials, 2011, 23(13):3132-3134.
[23]  Wang J, Munir A, Li Z, et al.Aptamer-au nps conjugates-enhanced spr sensing for the ultrasensitive sandwich immunoassay[J].Biosensors and Bioelectronics, 2009, 25(1):124-129.
[24]  Peng H, Stich M I, Yu J, et al.Luminescent europium (Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range[J].Advanced Materials, 2010, 22(6):716-719.
[25]  Jain P K, Huang X, El Sayed I H, et al.Noble metals on the nanoscale:Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J].Accounts of Chemical Research, 2008, 41(12):1578-1586.
[26]  Chen W T, Yang T T, Hsu Y J.Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property[J].Chemistry of Materials, 2008, 20(23):7204-7206.
[27]  He L, Liu Y, Liu J, et al.Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property[J].Angewandte Chemie International Edition, 2013, 52(13):3741-3745.
[28]  Kuo C-H, Tang Y, Chou L-Y, et al.Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J].Journal of the American Chemical Society, 2012, 134(35):14345-14348.
[29]  Liu N, Yao Y, Cha J J, et al.Functionalization of silicon nanowire surfaces with metal-organic frameworks[J].Nano Research, 2012, 5(2):109-116.
[30]  Sorribas S, Zornoza B, Téllez C, et al.Ordered mesoporous silica-(ZIF-8) core-shell spheres[J].Chemical Communications, 2012, 48(75):9388-9390.
[31]  Burrows A D.Mixed-component metal-organic frameworks (MC-MOFs):Enhancing functionality through solid solution formation and surface modifications[J].Cryst.Eng.Comm., 2011, 13(11):3623-3642.
[32]  Wei Y, Han S, Walker D A, et al.Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion[J].Angew.Chem.Int.Ed.Engl., 2012, 51(30):7435-7439.
[33]  Zhao Wenru, Zhang Lingxia, Chen Hangrong, et al.Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J].Journal of the American Chemical Society, 2005, 127(25):8916-8917.
[34]  Zhang C F, Qiu L G, Ke F, et al.A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J].Journal of Materials Chemistry A, 2013, 1(45):14329-14334.
[35]  Silvestre M E, Franzreb M, Weidler P G, et al.Magnetic cores with porous coatings:Growth of metal-organic frameworks on particles using liquid phase epitaxy[J].Advanced Functional Materials, 2013, 23(9):1210-1213.
[36]  Zhang Y F, Qiu L G, Yuan Y P, et al.Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from mof-based materials and their photocatalytic properties under visible light[J].Applied Catalysis B, Environmental, 2014, 144:863-869.
[37]  Zhang Y, Xia C.Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous knoevenagel condensation[J].Applied Catalysis A:General, 2009, 366(1):141-147.
[38]  Martins L, H?lderich W, Hammer P, et al.Preparation of different basic si-mcm-41 catalysts and application in the knoevenagel and claisen-schmidt condensation reactions[J].Journal of Catalysis, 2010, 271(2):220-227.
[39]  Parida K M, Mallick S, Sahoo P C, et al.A Facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in knoevenagel condensation[J].Applied Catalysis A:General, 2010, 381(1-2):226-232.
[40]  Yang P, Yan H, Mao S, et al.Controlled growth of zno nanowires and their optical properties[J].Advanced Functional Materials, 2002, 12(5):323-331. 3.0.CO;2-G target="_blank">
[41]  Choi S W, Park J Y, Kim S S.Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties[J].Nanotechnology, 2009, 20(46):465603.
[42]  Kong X Y, Ding Y, Wang Z L.Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes[J].The Journal of Physical Chemistry B, 2003, 108(2):570-574.
[43]  Zhan W W, Kuang Q, Zhou J Z, et al.Semiconductor@metal-organic framework core-shell heterostructures:A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J].Journal of the American Chemical Society, 2013, 135(5):1926-1933.
[44]  Muller M, Hermes S, Kahler K, et al.Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors:Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis[J].Chemistry of Materials, 2008, 20(14):4576-4587.
[45]  Ahmed A, Forster M, Clowes R, et al.Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation[J].Journal of Materials Chemistry A, 2013, 1(10):3276-3286.
[46]  Fu Y Y, Yang C X, Yan X P.Fabrication of ZIF-8@SiO2 core-shell microspheres as the stationary phase for high-performance liquid chromatography[J].Chemistry -A European Journal, 2013, 19(40):13484-13491.
[47]  Ma Y, Qi L, Ma J, et al.Large-pore mesoporous silica spheres:Synthesis and application in HPLC[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 229(1):1-8.
[48]  Fenner D, Biegelsen D, Bringans R.Silicon surface passivation by hydrogen termination:A comparative study of preparation methods[J].Journal of Applied Physics, 1989, 66(1):419-424.
[49]  Faria A M, Magalhaes D R, Collins K E, et al.Characterization of zirconized silica supports for HPLC[J].Analytica Chimica Acta, 2005, 550(1):137-143.
[50]  Koh K, Wong-Foy A G, Matzger A J.MOF@MOF:Microporous core-shell architectures[J].Chemical Communications, 2009, 41:6162-6164.
[51]  Gadzikwa T, Farha O K, Malliakas C D, et al.Selective bifunctional modification of a non-catenated metal-organic framework material via "click" chemistry[J].Journal of the American Chemical Society, 2009, 131(38):13613-13615.
[52]  Shekhah O, Hirai K, Wang H, et al.MOF-on-MOF heteroepitaxy:Perfectly oriented [Zn2(NDC)2(DaBCO)] N grown on [Cu2(NDC)2 (DaBCO)] N thin films[J].Dalton Transactions, 2011, 40(18):4954-4958.
[53]  Li T, Sullivan J E, Rosi N L.Design and preparation of a core-shell metal-organic framework for selective CO2 capture[J].Journal of the American Chemical Society, 2013, 135(27):9984-9987.
[54]  Song X, Kim T K, Kim H, et al.Post-synthetic modifications of framework metal ions in isostructural metal-organic frameworks:Core-shell heterostructures via selective transmetalations[J].Chemistry of Materials, 2012, 24(15):3065-3073.
[55]  Cubillas P, Anderson M W, Attfield M P.Influence of isomorphous substituting cobalt ions on the crystal growth of the MOF-5 framework determined by atomic force microscopy of growing core-shell crystals[J].Crystal Growth & Design, 2013, 13(10):4526-4532.
[56]  Lee H J, Cho W, Oh M.Advanced fabrication of metal-organic frameworks:Template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres[J].Chemical Communications, 2012, 48(2):221-223.
[57]  Tran U P N, Le K K A, Phan N T S.Expanding applications of metal-organic frameworks:Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J].ACS Catalysis, 2011, 1(2):120-127.
[58]  Lu G, Hupp J T.Metal-organic frameworks as sensors:A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J].Journal of the American Chemical Society, 2010, 132(23):7832-7833.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133